Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951329713> ?p ?o ?g. }
- W2951329713 endingPage "383" @default.
- W2951329713 startingPage "372" @default.
- W2951329713 abstract "Magnetoencephalography (MEG) is a direct measure of neuronal current flow; its anatomical resolution is therefore not constrained by physiology but rather by data quality and the models used to explain these data. Recent simulation work has shown that it is possible to distinguish between signals arising in the deep and superficial cortical laminae given accurate knowledge of these surfaces with respect to the MEG sensors. This previous work has focused around a single inversion scheme (multiple sparse priors) and a single global parametric fit metric (free energy). In this paper we use several different source inversion algorithms and both local and global, as well as parametric and non-parametric fit metrics in order to demonstrate the robustness of the discrimination between layers. We find that only algorithms with some sparsity constraint can successfully be used to make laminar discrimination. Importantly, local t-statistics, global cross-validation and free energy all provide robust and mutually corroborating metrics of fit. We show that discrimination accuracy is affected by patch size estimates, cortical surface features, and lead field strength, which suggests several possible future improvements to this technique. This study demonstrates the possibility of determining the laminar origin of MEG sensor activity, and thus directly testing theories of human cognition that involve laminar- and frequency-specific mechanisms. This possibility can now be achieved using recent developments in high precision MEG, most notably the use of subject-specific head-casts, which allow for significant increases in data quality and therefore anatomically precise MEG recordings.Analysis methods.Source localization: inverse problem; Source localization: other." @default.
- W2951329713 created "2019-06-27" @default.
- W2951329713 creator A5005491067 @default.
- W2951329713 creator A5032005753 @default.
- W2951329713 creator A5037110800 @default.
- W2951329713 creator A5039504387 @default.
- W2951329713 creator A5044349467 @default.
- W2951329713 creator A5048355170 @default.
- W2951329713 creator A5058848174 @default.
- W2951329713 creator A5062724086 @default.
- W2951329713 creator A5086392051 @default.
- W2951329713 date "2018-02-01" @default.
- W2951329713 modified "2023-10-03" @default.
- W2951329713 title "Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms" @default.
- W2951329713 cites W1551715170 @default.
- W2951329713 cites W1902335101 @default.
- W2951329713 cites W1967337284 @default.
- W2951329713 cites W1971207650 @default.
- W2951329713 cites W1972475674 @default.
- W2951329713 cites W1973042443 @default.
- W2951329713 cites W1974165416 @default.
- W2951329713 cites W1974328386 @default.
- W2951329713 cites W1974637957 @default.
- W2951329713 cites W1977628053 @default.
- W2951329713 cites W1978386551 @default.
- W2951329713 cites W1980014238 @default.
- W2951329713 cites W1980405727 @default.
- W2951329713 cites W1987380439 @default.
- W2951329713 cites W1989125398 @default.
- W2951329713 cites W1991258631 @default.
- W2951329713 cites W1991534565 @default.
- W2951329713 cites W1993307163 @default.
- W2951329713 cites W1993665893 @default.
- W2951329713 cites W1996538430 @default.
- W2951329713 cites W1996563564 @default.
- W2951329713 cites W1998151455 @default.
- W2951329713 cites W2000790011 @default.
- W2951329713 cites W2001026093 @default.
- W2951329713 cites W2001384751 @default.
- W2951329713 cites W2004268432 @default.
- W2951329713 cites W2006473533 @default.
- W2951329713 cites W2009795473 @default.
- W2951329713 cites W2010942322 @default.
- W2951329713 cites W2012897638 @default.
- W2951329713 cites W2014078425 @default.
- W2951329713 cites W2015151082 @default.
- W2951329713 cites W2022704107 @default.
- W2951329713 cites W2024513780 @default.
- W2951329713 cites W2029262131 @default.
- W2951329713 cites W2033422410 @default.
- W2951329713 cites W2037420423 @default.
- W2951329713 cites W2041464948 @default.
- W2951329713 cites W2043877765 @default.
- W2951329713 cites W2044129383 @default.
- W2951329713 cites W2045823207 @default.
- W2951329713 cites W2046198005 @default.
- W2951329713 cites W2050151003 @default.
- W2951329713 cites W2050506578 @default.
- W2951329713 cites W2051272404 @default.
- W2951329713 cites W2051850587 @default.
- W2951329713 cites W2054899251 @default.
- W2951329713 cites W2061665919 @default.
- W2951329713 cites W2062819254 @default.
- W2951329713 cites W2063347383 @default.
- W2951329713 cites W2064327730 @default.
- W2951329713 cites W2068810703 @default.
- W2951329713 cites W2071137742 @default.
- W2951329713 cites W2084413241 @default.
- W2951329713 cites W2087636287 @default.
- W2951329713 cites W2098580305 @default.
- W2951329713 cites W2100733433 @default.
- W2951329713 cites W2101980511 @default.
- W2951329713 cites W2103954178 @default.
- W2951329713 cites W2104731571 @default.
- W2951329713 cites W2107165478 @default.
- W2951329713 cites W2107365776 @default.
- W2951329713 cites W2110208125 @default.
- W2951329713 cites W2111177605 @default.
- W2951329713 cites W2113257799 @default.
- W2951329713 cites W2117144089 @default.
- W2951329713 cites W2119180809 @default.
- W2951329713 cites W2120079537 @default.
- W2951329713 cites W2121324852 @default.
- W2951329713 cites W2126025197 @default.
- W2951329713 cites W2134095832 @default.
- W2951329713 cites W2135595031 @default.
- W2951329713 cites W2138173706 @default.
- W2951329713 cites W2143834603 @default.
- W2951329713 cites W2147338714 @default.
- W2951329713 cites W2148417430 @default.
- W2951329713 cites W2156108679 @default.
- W2951329713 cites W2157084876 @default.
- W2951329713 cites W2160983643 @default.
- W2951329713 cites W2165757806 @default.
- W2951329713 cites W2168705467 @default.
- W2951329713 cites W2180627541 @default.
- W2951329713 cites W2236276190 @default.
- W2951329713 cites W2261693453 @default.