Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951357726> ?p ?o ?g. }
- W2951357726 abstract "3D shape models are naturally parameterized using vertices and faces, ie, composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent `geometry images' representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images." @default.
- W2951357726 created "2019-06-27" @default.
- W2951357726 creator A5056540212 @default.
- W2951357726 creator A5073776956 @default.
- W2951357726 creator A5087144359 @default.
- W2951357726 creator A5088676177 @default.
- W2951357726 date "2017-03-12" @default.
- W2951357726 modified "2023-09-28" @default.
- W2951357726 title "SurfNet: Generating 3D shape surfaces using deep residual networks" @default.
- W2951357726 cites W1893585201 @default.
- W2951357726 cites W1915142102 @default.
- W2951357726 cites W1920022804 @default.
- W2951357726 cites W1928739709 @default.
- W2951357726 cites W1946195119 @default.
- W2951357726 cites W1991264156 @default.
- W2951357726 cites W2005999035 @default.
- W2951357726 cites W2073431710 @default.
- W2951357726 cites W2075156252 @default.
- W2951357726 cites W2092773680 @default.
- W2951357726 cites W2114111978 @default.
- W2951357726 cites W2143133882 @default.
- W2951357726 cites W2156756707 @default.
- W2951357726 cites W2161960196 @default.
- W2951357726 cites W2165874743 @default.
- W2951357726 cites W2173520492 @default.
- W2951357726 cites W2190691619 @default.
- W2951357726 cites W2194775991 @default.
- W2951357726 cites W2208936087 @default.
- W2951357726 cites W2210697964 @default.
- W2951357726 cites W2295332248 @default.
- W2951357726 cites W2335364074 @default.
- W2951357726 cites W2338532005 @default.
- W2951357726 cites W2341600683 @default.
- W2951357726 cites W2342277278 @default.
- W2951357726 cites W2394951287 @default.
- W2951357726 cites W2466332079 @default.
- W2951357726 cites W2469266052 @default.
- W2951357726 cites W2518780089 @default.
- W2951357726 cites W2546066744 @default.
- W2951357726 cites W2950025457 @default.
- W2951357726 cites W2962865163 @default.
- W2951357726 cites W3106165820 @default.
- W2951357726 hasPublicationYear "2017" @default.
- W2951357726 type Work @default.
- W2951357726 sameAs 2951357726 @default.
- W2951357726 citedByCount "16" @default.
- W2951357726 countsByYear W29513577262017 @default.
- W2951357726 countsByYear W29513577262018 @default.
- W2951357726 countsByYear W29513577262019 @default.
- W2951357726 countsByYear W29513577262020 @default.
- W2951357726 countsByYear W29513577262021 @default.
- W2951357726 crossrefType "posted-content" @default.
- W2951357726 hasAuthorship W2951357726A5056540212 @default.
- W2951357726 hasAuthorship W2951357726A5073776956 @default.
- W2951357726 hasAuthorship W2951357726A5087144359 @default.
- W2951357726 hasAuthorship W2951357726A5088676177 @default.
- W2951357726 hasConcept C105795698 @default.
- W2951357726 hasConcept C108583219 @default.
- W2951357726 hasConcept C112604564 @default.
- W2951357726 hasConcept C11413529 @default.
- W2951357726 hasConcept C115961682 @default.
- W2951357726 hasConcept C117251300 @default.
- W2951357726 hasConcept C117258860 @default.
- W2951357726 hasConcept C120665830 @default.
- W2951357726 hasConcept C121332964 @default.
- W2951357726 hasConcept C134306372 @default.
- W2951357726 hasConcept C154945302 @default.
- W2951357726 hasConcept C155512373 @default.
- W2951357726 hasConcept C165464430 @default.
- W2951357726 hasConcept C17744445 @default.
- W2951357726 hasConcept C192209626 @default.
- W2951357726 hasConcept C199360897 @default.
- W2951357726 hasConcept C199539241 @default.
- W2951357726 hasConcept C2187777 @default.
- W2951357726 hasConcept C2524010 @default.
- W2951357726 hasConcept C2776359362 @default.
- W2951357726 hasConcept C2776799497 @default.
- W2951357726 hasConcept C31972630 @default.
- W2951357726 hasConcept C33923547 @default.
- W2951357726 hasConcept C41008148 @default.
- W2951357726 hasConcept C45347329 @default.
- W2951357726 hasConcept C50644808 @default.
- W2951357726 hasConcept C62354387 @default.
- W2951357726 hasConcept C81363708 @default.
- W2951357726 hasConcept C94625758 @default.
- W2951357726 hasConcept C97686452 @default.
- W2951357726 hasConceptScore W2951357726C105795698 @default.
- W2951357726 hasConceptScore W2951357726C108583219 @default.
- W2951357726 hasConceptScore W2951357726C112604564 @default.
- W2951357726 hasConceptScore W2951357726C11413529 @default.
- W2951357726 hasConceptScore W2951357726C115961682 @default.
- W2951357726 hasConceptScore W2951357726C117251300 @default.
- W2951357726 hasConceptScore W2951357726C117258860 @default.
- W2951357726 hasConceptScore W2951357726C120665830 @default.
- W2951357726 hasConceptScore W2951357726C121332964 @default.
- W2951357726 hasConceptScore W2951357726C134306372 @default.
- W2951357726 hasConceptScore W2951357726C154945302 @default.
- W2951357726 hasConceptScore W2951357726C155512373 @default.
- W2951357726 hasConceptScore W2951357726C165464430 @default.
- W2951357726 hasConceptScore W2951357726C17744445 @default.