Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951389847> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2951389847 abstract "Methods for learning Bayesian network structure can discover dependency structure between observed variables, and have been shown to be useful in many applications. However, in domains that involve a large number of variables, the space of possible network structures is enormous, making it difficult, for both computational and statistical reasons, to identify a good model. In this paper, we consider a solution to this problem, suitable for domains where many variables have similar behavior. Our method is based on a new class of models, which we call module networks. A module network explicitly represents the notion of a module - a set of variables that have the same parents in the network and share the same conditional probability distribution. We define the semantics of module networks, and describe an algorithm that learns a module network from data. The algorithm learns both the partitioning of the variables into modules and the dependency structure between the variables. We evaluate our algorithm on synthetic data, and on real data in the domains of gene expression and the stock market. Our results show that module networks generalize better than Bayesian networks, and that the learned module network structure reveals regularities that are obscured in learned Bayesian networks." @default.
- W2951389847 created "2019-06-27" @default.
- W2951389847 creator A5004067604 @default.
- W2951389847 creator A5012450539 @default.
- W2951389847 creator A5051658526 @default.
- W2951389847 creator A5074451448 @default.
- W2951389847 creator A5076999649 @default.
- W2951389847 date "2012-10-19" @default.
- W2951389847 modified "2023-09-23" @default.
- W2951389847 title "Learning Module Networks" @default.
- W2951389847 cites W1581645897 @default.
- W2951389847 cites W1606263311 @default.
- W2951389847 cites W1615454278 @default.
- W2951389847 cites W1864566053 @default.
- W2951389847 cites W2008906462 @default.
- W2951389847 cites W2030165415 @default.
- W2951389847 cites W2110111529 @default.
- W2951389847 cites W2137683543 @default.
- W2951389847 cites W2167190345 @default.
- W2951389847 cites W2170112109 @default.
- W2951389847 cites W2611370172 @default.
- W2951389847 cites W3022603917 @default.
- W2951389847 hasPublicationYear "2012" @default.
- W2951389847 type Work @default.
- W2951389847 sameAs 2951389847 @default.
- W2951389847 citedByCount "0" @default.
- W2951389847 crossrefType "posted-content" @default.
- W2951389847 hasAuthorship W2951389847A5004067604 @default.
- W2951389847 hasAuthorship W2951389847A5012450539 @default.
- W2951389847 hasAuthorship W2951389847A5051658526 @default.
- W2951389847 hasAuthorship W2951389847A5074451448 @default.
- W2951389847 hasAuthorship W2951389847A5076999649 @default.
- W2951389847 hasConcept C119857082 @default.
- W2951389847 hasConcept C124101348 @default.
- W2951389847 hasConcept C154945302 @default.
- W2951389847 hasConcept C177264268 @default.
- W2951389847 hasConcept C19768560 @default.
- W2951389847 hasConcept C199360897 @default.
- W2951389847 hasConcept C2777212361 @default.
- W2951389847 hasConcept C33724603 @default.
- W2951389847 hasConcept C41008148 @default.
- W2951389847 hasConcept C80444323 @default.
- W2951389847 hasConceptScore W2951389847C119857082 @default.
- W2951389847 hasConceptScore W2951389847C124101348 @default.
- W2951389847 hasConceptScore W2951389847C154945302 @default.
- W2951389847 hasConceptScore W2951389847C177264268 @default.
- W2951389847 hasConceptScore W2951389847C19768560 @default.
- W2951389847 hasConceptScore W2951389847C199360897 @default.
- W2951389847 hasConceptScore W2951389847C2777212361 @default.
- W2951389847 hasConceptScore W2951389847C33724603 @default.
- W2951389847 hasConceptScore W2951389847C41008148 @default.
- W2951389847 hasConceptScore W2951389847C80444323 @default.
- W2951389847 hasOpenAccess W2951389847 @default.
- W2951389847 hasRelatedWork W1801737117 @default.
- W2951389847 hasRelatedWork W1863027961 @default.
- W2951389847 hasRelatedWork W2103160678 @default.
- W2951389847 hasRelatedWork W2104877015 @default.
- W2951389847 hasRelatedWork W2139818818 @default.
- W2951389847 hasRelatedWork W2140991633 @default.
- W2951389847 hasRelatedWork W2146521249 @default.
- W2951389847 hasRelatedWork W2151303132 @default.
- W2951389847 hasRelatedWork W2156252538 @default.
- W2951389847 hasRelatedWork W2186581219 @default.
- W2951389847 hasRelatedWork W2407600638 @default.
- W2951389847 hasRelatedWork W2503787270 @default.
- W2951389847 hasRelatedWork W2555206476 @default.
- W2951389847 hasRelatedWork W2745389297 @default.
- W2951389847 hasRelatedWork W2801721891 @default.
- W2951389847 hasRelatedWork W2891373492 @default.
- W2951389847 hasRelatedWork W2898798880 @default.
- W2951389847 hasRelatedWork W2949437261 @default.
- W2951389847 hasRelatedWork W2951844204 @default.
- W2951389847 hasRelatedWork W3099950075 @default.
- W2951389847 isParatext "false" @default.
- W2951389847 isRetracted "false" @default.
- W2951389847 magId "2951389847" @default.
- W2951389847 workType "article" @default.