Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951401538> ?p ?o ?g. }
- W2951401538 abstract "Given a class of differential equations with arbitrary element, the problems of symmetry group, nonclassical symmetry and conservation law classifications are to determine for each member the structure of its Lie symmetry group, conditional symmetry and conservation law under some proper equivalence transformations groups. In this paper, an extensive investigation of these three aspects is carried out for the class of variable coefficient (1+1)-dimensional nonlinear telegraph equations with coefficients depending on the space variable. The usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements are first constructed. Then using the technique of variable gauges of arbitrary elements under equivalence transformations, we restrict ourselves to the symmetry group classifications for the equations with two different gauges g=1 and g=h. In order to get the ultimate classification, the method of furcate split is also used and consequently a number of new interesting nonlinear invariant models which have non-trivial invariance algebra are obtained. As an application, exact solutions for some equations which are singled out from the classification results are constructed by the classical Lie reduction. The classification of nonclassical symmetries for the classes of differential equations with gauge g=1 is discussed within the framework of singular reduction operator. Using the direct method, we also carry out two classifications of local conservation laws up to equivalence relations generated by both usual and extended equivalence groups. Equivalence with respect to these groups and correct choice of gauge coefficients of equations play the major role for simple and clear formulation of the final results." @default.
- W2951401538 created "2019-06-27" @default.
- W2951401538 creator A5017862559 @default.
- W2951401538 creator A5079108986 @default.
- W2951401538 date "2011-01-25" @default.
- W2951401538 modified "2023-09-26" @default.
- W2951401538 title "Group-theoretical analysis of variable coefficient nonlinear telegraph equations" @default.
- W2951401538 cites W1552987673 @default.
- W2951401538 cites W1573927207 @default.
- W2951401538 cites W1574245975 @default.
- W2951401538 cites W1584240939 @default.
- W2951401538 cites W1606746543 @default.
- W2951401538 cites W1643233812 @default.
- W2951401538 cites W1650078022 @default.
- W2951401538 cites W1672910557 @default.
- W2951401538 cites W1963504243 @default.
- W2951401538 cites W1967281373 @default.
- W2951401538 cites W1967665325 @default.
- W2951401538 cites W1967943080 @default.
- W2951401538 cites W1973640278 @default.
- W2951401538 cites W1975216600 @default.
- W2951401538 cites W1982262521 @default.
- W2951401538 cites W1990106507 @default.
- W2951401538 cites W1991264298 @default.
- W2951401538 cites W1993980679 @default.
- W2951401538 cites W1996843793 @default.
- W2951401538 cites W2000867446 @default.
- W2951401538 cites W2007639391 @default.
- W2951401538 cites W2014689716 @default.
- W2951401538 cites W2028402459 @default.
- W2951401538 cites W2030377529 @default.
- W2951401538 cites W2031682513 @default.
- W2951401538 cites W2034145130 @default.
- W2951401538 cites W2034158027 @default.
- W2951401538 cites W2045705178 @default.
- W2951401538 cites W2047161594 @default.
- W2951401538 cites W2050033783 @default.
- W2951401538 cites W2052548613 @default.
- W2951401538 cites W2053148497 @default.
- W2951401538 cites W2056030717 @default.
- W2951401538 cites W2056203186 @default.
- W2951401538 cites W2059829711 @default.
- W2951401538 cites W2064448686 @default.
- W2951401538 cites W2069756568 @default.
- W2951401538 cites W2070605055 @default.
- W2951401538 cites W2077083483 @default.
- W2951401538 cites W2083960709 @default.
- W2951401538 cites W2086379949 @default.
- W2951401538 cites W2087901012 @default.
- W2951401538 cites W2094366276 @default.
- W2951401538 cites W2107134442 @default.
- W2951401538 cites W2112888839 @default.
- W2951401538 cites W2114892783 @default.
- W2951401538 cites W2131102295 @default.
- W2951401538 cites W2147635720 @default.
- W2951401538 cites W2162537074 @default.
- W2951401538 cites W2164326005 @default.
- W2951401538 cites W2168350108 @default.
- W2951401538 cites W2198979185 @default.
- W2951401538 cites W2388654028 @default.
- W2951401538 cites W243844230 @default.
- W2951401538 cites W2488195552 @default.
- W2951401538 cites W2577789786 @default.
- W2951401538 cites W2797256054 @default.
- W2951401538 cites W2798379006 @default.
- W2951401538 cites W2998143205 @default.
- W2951401538 cites W3098069507 @default.
- W2951401538 cites W3098234826 @default.
- W2951401538 cites W3100932619 @default.
- W2951401538 cites W3102005637 @default.
- W2951401538 cites W3106104040 @default.
- W2951401538 doi "https://doi.org/10.48550/arxiv.1101.4755" @default.
- W2951401538 hasPublicationYear "2011" @default.
- W2951401538 type Work @default.
- W2951401538 sameAs 2951401538 @default.
- W2951401538 citedByCount "1" @default.
- W2951401538 countsByYear W29514015382020 @default.
- W2951401538 crossrefType "posted-content" @default.
- W2951401538 hasAuthorship W2951401538A5017862559 @default.
- W2951401538 hasAuthorship W2951401538A5079108986 @default.
- W2951401538 hasBestOaLocation W29514015381 @default.
- W2951401538 hasConcept C121332964 @default.
- W2951401538 hasConcept C134306372 @default.
- W2951401538 hasConcept C158622935 @default.
- W2951401538 hasConcept C190470478 @default.
- W2951401538 hasConcept C202444582 @default.
- W2951401538 hasConcept C2524010 @default.
- W2951401538 hasConcept C2777044963 @default.
- W2951401538 hasConcept C2780069185 @default.
- W2951401538 hasConcept C2781311116 @default.
- W2951401538 hasConcept C33923547 @default.
- W2951401538 hasConcept C3445786 @default.
- W2951401538 hasConcept C37914503 @default.
- W2951401538 hasConcept C44306375 @default.
- W2951401538 hasConcept C62520636 @default.
- W2951401538 hasConcept C78045399 @default.
- W2951401538 hasConcept C96469262 @default.
- W2951401538 hasConceptScore W2951401538C121332964 @default.
- W2951401538 hasConceptScore W2951401538C134306372 @default.
- W2951401538 hasConceptScore W2951401538C158622935 @default.