Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951404865> ?p ?o ?g. }
- W2951404865 abstract "Conventional neural networks show a powerful framework for background subtraction in video acquired by static cameras. Indeed, the well-known SOBS method and its variants based on neural networks were the leader methods on the largescale CDnet 2012 dataset during a long time. Recently, convolutional neural networks which belong to deep learning methods were employed with success for background initialization, foreground detection and deep learned features. Currently, the top current background subtraction methods in CDnet 2014 are based on deep neural networks with a large gap of performance in comparison on the conventional unsupervised approaches based on multi-features or multi-cues strategies. Furthermore, a huge amount of papers was published since 2016 when Braham and Van Droogenbroeck published their first work on CNN applied to background subtraction providing a regular gain of performance. In this context, we provide the first review of deep neural network concepts in background subtraction for novices and experts in order to analyze this success and to provide further directions. For this, we first surveyed the methods used background initialization, background subtraction and deep learned features. Then, we discuss the adequacy of deep neural networks for background subtraction. Finally, experimental results are presented on the CDnet 2014 dataset." @default.
- W2951404865 created "2019-06-27" @default.
- W2951404865 creator A5042187841 @default.
- W2951404865 creator A5046143134 @default.
- W2951404865 creator A5071515463 @default.
- W2951404865 creator A5076996327 @default.
- W2951404865 date "2018-11-13" @default.
- W2951404865 modified "2023-09-27" @default.
- W2951404865 title "Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation" @default.
- W2951404865 cites W119472258 @default.
- W2951404865 cites W1484372434 @default.
- W2951404865 cites W1490350752 @default.
- W2951404865 cites W1496039596 @default.
- W2951404865 cites W1499877760 @default.
- W2951404865 cites W1520389973 @default.
- W2951404865 cites W1525699417 @default.
- W2951404865 cites W1534876805 @default.
- W2951404865 cites W1539417956 @default.
- W2951404865 cites W1546617119 @default.
- W2951404865 cites W1677182931 @default.
- W2951404865 cites W1710476689 @default.
- W2951404865 cites W1901129140 @default.
- W2951404865 cites W1903029394 @default.
- W2951404865 cites W1919155910 @default.
- W2951404865 cites W1966844521 @default.
- W2951404865 cites W1969977005 @default.
- W2951404865 cites W1970493094 @default.
- W2951404865 cites W1988061476 @default.
- W2951404865 cites W1995341919 @default.
- W2951404865 cites W1998360926 @default.
- W2951404865 cites W2001933992 @default.
- W2951404865 cites W2005965681 @default.
- W2951404865 cites W2006513420 @default.
- W2951404865 cites W2011649048 @default.
- W2951404865 cites W2017921814 @default.
- W2951404865 cites W2021345820 @default.
- W2951404865 cites W2032660018 @default.
- W2951404865 cites W2035866593 @default.
- W2951404865 cites W2038095376 @default.
- W2951404865 cites W2040441737 @default.
- W2951404865 cites W2046242814 @default.
- W2951404865 cites W2052524720 @default.
- W2951404865 cites W2056177645 @default.
- W2951404865 cites W2059639989 @default.
- W2951404865 cites W2062520372 @default.
- W2951404865 cites W2065914597 @default.
- W2951404865 cites W2067813398 @default.
- W2951404865 cites W2076063813 @default.
- W2951404865 cites W2077446288 @default.
- W2951404865 cites W2077936164 @default.
- W2951404865 cites W2079218418 @default.
- W2951404865 cites W2079481876 @default.
- W2951404865 cites W2091135040 @default.
- W2951404865 cites W2091741383 @default.
- W2951404865 cites W2095581126 @default.
- W2951404865 cites W2095705004 @default.
- W2951404865 cites W2097117768 @default.
- W2951404865 cites W2101705628 @default.
- W2951404865 cites W2102188949 @default.
- W2951404865 cites W2102625004 @default.
- W2951404865 cites W2104433781 @default.
- W2951404865 cites W2105557521 @default.
- W2951404865 cites W2105781123 @default.
- W2951404865 cites W2108598243 @default.
- W2951404865 cites W2112204123 @default.
- W2951404865 cites W2112796928 @default.
- W2951404865 cites W2116424792 @default.
- W2951404865 cites W2119821739 @default.
- W2951404865 cites W2122423951 @default.
- W2951404865 cites W2122572179 @default.
- W2951404865 cites W2132265901 @default.
- W2951404865 cites W2136922672 @default.
- W2951404865 cites W2143612262 @default.
- W2951404865 cites W2149021215 @default.
- W2951404865 cites W2150489380 @default.
- W2951404865 cites W2154052465 @default.
- W2951404865 cites W2161000554 @default.
- W2951404865 cites W2173520492 @default.
- W2951404865 cites W2194775991 @default.
- W2951404865 cites W2200116135 @default.
- W2951404865 cites W2201721810 @default.
- W2951404865 cites W2271840356 @default.
- W2951404865 cites W2293428177 @default.
- W2951404865 cites W2294546190 @default.
- W2951404865 cites W2315162709 @default.
- W2951404865 cites W2342877626 @default.
- W2951404865 cites W2406379805 @default.
- W2951404865 cites W2412782625 @default.
- W2951404865 cites W242805321 @default.
- W2951404865 cites W2483920485 @default.
- W2951404865 cites W2485576322 @default.
- W2951404865 cites W2499295842 @default.
- W2951404865 cites W2511363568 @default.
- W2951404865 cites W2525668722 @default.
- W2951404865 cites W2528448724 @default.
- W2951404865 cites W2538773003 @default.
- W2951404865 cites W2543927648 @default.
- W2951404865 cites W2559351225 @default.
- W2951404865 cites W2562554684 @default.
- W2951404865 cites W2565516711 @default.