Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951423614> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2951423614 abstract "Our visual system is sensitive to boundaries defined by differences in cues such as luminance (first-order cue), as well as texture, contrast, or motion (second-order cues). Gradients in these cues can be utilized to perform tasks such as figure-ground segregation and 3D shape perception. A significant fraction of neurons in the early visual cortex of cats and monkeys have been shown to be selective to both first- and second-order boundaries. These neurons are thought to be the neural correlate for perceptual encoding of such boundaries. They are selective for the same boundary orientation irrespective of the cue (first- or second-order) that defines it (“form cue-invariance”), which makes these neurons powerful candidates for the task of segmentation. However, the neural circuitry that gives rise to this selectivity for the early stages of visual processing remains unclear. To address this question, I perform neurophysiological recordings at the early stages of the visual pathway in cats, and then build biologically inspired neural circuit models that can account for visual response properties of neurons at subcortical as well as early cortical stages. In Chapter 2, I use multi-electrode recordings to demonstrate the presence of a significant fraction of neurons in cat Area 18 with nonlinear receptive fields like those of subcortical Y-type cells. These neurons have receptive field properties intermediate between subcortical Y cells and cortical orientation selective cue-invariant neurons. These are strong candidates for building cue-invariant orientation-selective neurons. Furthermore I present a novel neural circuit model that pools such Y-like neurons in an unbalanced “push-pull” manner, to generate orientation-selective cue-invariant receptive fields.In Chapter 3, I estimate biologically constrained neural network models of cat LGN receptive fields using recent machine learning methods (deep learning). The receptive fields are modeled as arising from a two-stage convolutional neural network model. The first stage, corresponding to retinal bipolar cell subunits, is modeled as a convolutional filter layer, and the second stage is modeled as a pooling layer. These two layers are separated by an intermediate parametric nonlinearity. I train such a neural network model for each recorded LGN neuron, using its spiking responses to naturalistic texture stimuli. These models are not only better in comparison to the standard linear-nonlinear models at predicting response to arbitrary stimuli, but they also recover biologically interpretable subunit models.In chapter 4, I evaluate the integration of ON- and OFF-pathway inputs by individual neurons in early cortical areas of the cat (Area 17 and Area 18). In this study, I model receptive fields of cortical simple cells as a linear weighted sum of rectified inputs from model ON- and OFF-center LGN afferents, with the weights estimated using a regression framework. The estimated models reveal significant asymmetries in spatiotemporal integration of ON and OFF signals within…" @default.
- W2951423614 created "2019-06-27" @default.
- W2951423614 creator A5055409557 @default.
- W2951423614 date "2018-01-01" @default.
- W2951423614 modified "2023-09-24" @default.
- W2951423614 title "Nonlinear subunit models of neuronal receptive fields in the early visual pathway" @default.
- W2951423614 hasPublicationYear "2018" @default.
- W2951423614 type Work @default.
- W2951423614 sameAs 2951423614 @default.
- W2951423614 citedByCount "0" @default.
- W2951423614 crossrefType "journal-article" @default.
- W2951423614 hasAuthorship W2951423614A5055409557 @default.
- W2951423614 hasConcept C104319648 @default.
- W2951423614 hasConcept C111370547 @default.
- W2951423614 hasConcept C119088629 @default.
- W2951423614 hasConcept C139793654 @default.
- W2951423614 hasConcept C152478114 @default.
- W2951423614 hasConcept C154945302 @default.
- W2951423614 hasConcept C15744967 @default.
- W2951423614 hasConcept C169760540 @default.
- W2951423614 hasConcept C178253425 @default.
- W2951423614 hasConcept C19071747 @default.
- W2951423614 hasConcept C198381616 @default.
- W2951423614 hasConcept C26760741 @default.
- W2951423614 hasConcept C2779091665 @default.
- W2951423614 hasConcept C2779345533 @default.
- W2951423614 hasConcept C41008148 @default.
- W2951423614 hasConcept C46312422 @default.
- W2951423614 hasConcept C94487597 @default.
- W2951423614 hasConceptScore W2951423614C104319648 @default.
- W2951423614 hasConceptScore W2951423614C111370547 @default.
- W2951423614 hasConceptScore W2951423614C119088629 @default.
- W2951423614 hasConceptScore W2951423614C139793654 @default.
- W2951423614 hasConceptScore W2951423614C152478114 @default.
- W2951423614 hasConceptScore W2951423614C154945302 @default.
- W2951423614 hasConceptScore W2951423614C15744967 @default.
- W2951423614 hasConceptScore W2951423614C169760540 @default.
- W2951423614 hasConceptScore W2951423614C178253425 @default.
- W2951423614 hasConceptScore W2951423614C19071747 @default.
- W2951423614 hasConceptScore W2951423614C198381616 @default.
- W2951423614 hasConceptScore W2951423614C26760741 @default.
- W2951423614 hasConceptScore W2951423614C2779091665 @default.
- W2951423614 hasConceptScore W2951423614C2779345533 @default.
- W2951423614 hasConceptScore W2951423614C41008148 @default.
- W2951423614 hasConceptScore W2951423614C46312422 @default.
- W2951423614 hasConceptScore W2951423614C94487597 @default.
- W2951423614 hasLocation W29514236141 @default.
- W2951423614 hasOpenAccess W2951423614 @default.
- W2951423614 hasPrimaryLocation W29514236141 @default.
- W2951423614 hasRelatedWork W128517039 @default.
- W2951423614 hasRelatedWork W1521759708 @default.
- W2951423614 hasRelatedWork W1600534154 @default.
- W2951423614 hasRelatedWork W1822130690 @default.
- W2951423614 hasRelatedWork W2006606897 @default.
- W2951423614 hasRelatedWork W2012065907 @default.
- W2951423614 hasRelatedWork W2016346726 @default.
- W2951423614 hasRelatedWork W2023229468 @default.
- W2951423614 hasRelatedWork W2051588856 @default.
- W2951423614 hasRelatedWork W2090490080 @default.
- W2951423614 hasRelatedWork W2134309959 @default.
- W2951423614 hasRelatedWork W2141564777 @default.
- W2951423614 hasRelatedWork W2471892705 @default.
- W2951423614 hasRelatedWork W2553024757 @default.
- W2951423614 hasRelatedWork W2567495231 @default.
- W2951423614 hasRelatedWork W2574812808 @default.
- W2951423614 hasRelatedWork W2732344321 @default.
- W2951423614 hasRelatedWork W2900404061 @default.
- W2951423614 hasRelatedWork W2921927911 @default.
- W2951423614 hasRelatedWork W2951481226 @default.
- W2951423614 isParatext "false" @default.
- W2951423614 isRetracted "false" @default.
- W2951423614 magId "2951423614" @default.
- W2951423614 workType "article" @default.