Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951435501> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2951435501 abstract "A classical open problem in combinatorial geometry is to obtain tight asymptotic bounds on the maximum number of k-level vertices in an arrangement of n hyperplanes in d dimensions (vertices with exactly k of the hyperplanes passing below them). This is a dual version of the k-set problem, which, in a primal setting, seeks bounds for the maximum number of k-sets determined by n points in d dimensions, where a k-set is a subset of size k that can be separated from its complement by a hyperplane. The k-set problem is still wide open even in the plane, with a substantial gap between the best known upper and lower bounds. The gap gets larger as the dimension grows. In three dimensions, the best known upper bound is O(nk^(3/2)). In its dual version, the problem can be generalized by replacing hyperplanes by other families of surfaces (or curves in the planes). Reasonably sharp bounds have been obtained for curves in the plane, but the known upper bounds are rather weak for more general surfaces, already in three dimensions, except for the case of triangles. The best known general bound, due to Chan is O(n^2.997), for families of surfaces that satisfy certain (fairly weak) properties. In this paper we consider the case of pseudoplanes in 3 dimensions (defined in detail in the introduction), and establish the upper bound O(nk^(5/3)) for the number of k-level vertices in an arrangement of n pseudoplanes. The bound is obtained by establishing suitable (and nontrivial) extensions of dual versions of classical tools that have been used in studying the primal k-set problem, such as the Lova'sz Lemma and the Crossing Lemma." @default.
- W2951435501 created "2019-06-27" @default.
- W2951435501 creator A5023815132 @default.
- W2951435501 creator A5055296785 @default.
- W2951435501 date "2019-03-17" @default.
- W2951435501 modified "2023-10-16" @default.
- W2951435501 title "On the Complexity of the k-Level in Arrangements of Pseudoplanes" @default.
- W2951435501 cites W13988344 @default.
- W2951435501 cites W1967603179 @default.
- W2951435501 cites W1984798955 @default.
- W2951435501 cites W2012504811 @default.
- W2951435501 cites W2021751455 @default.
- W2951435501 cites W2022266599 @default.
- W2951435501 cites W2028747718 @default.
- W2951435501 cites W2038730428 @default.
- W2951435501 cites W2046487802 @default.
- W2951435501 cites W2058432138 @default.
- W2951435501 cites W2067893166 @default.
- W2951435501 cites W2094683955 @default.
- W2951435501 cites W2120948000 @default.
- W2951435501 cites W2148015778 @default.
- W2951435501 cites W2343027471 @default.
- W2951435501 cites W3138908823 @default.
- W2951435501 cites W28901126 @default.
- W2951435501 doi "https://doi.org/10.48550/arxiv.1903.07196" @default.
- W2951435501 hasPublicationYear "2019" @default.
- W2951435501 type Work @default.
- W2951435501 sameAs 2951435501 @default.
- W2951435501 citedByCount "0" @default.
- W2951435501 crossrefType "posted-content" @default.
- W2951435501 hasAuthorship W2951435501A5023815132 @default.
- W2951435501 hasAuthorship W2951435501A5055296785 @default.
- W2951435501 hasBestOaLocation W29514355011 @default.
- W2951435501 hasConcept C104317684 @default.
- W2951435501 hasConcept C112313634 @default.
- W2951435501 hasConcept C114614502 @default.
- W2951435501 hasConcept C118615104 @default.
- W2951435501 hasConcept C127716648 @default.
- W2951435501 hasConcept C134306372 @default.
- W2951435501 hasConcept C150397156 @default.
- W2951435501 hasConcept C177264268 @default.
- W2951435501 hasConcept C17825722 @default.
- W2951435501 hasConcept C185592680 @default.
- W2951435501 hasConcept C188082640 @default.
- W2951435501 hasConcept C199360897 @default.
- W2951435501 hasConcept C2524010 @default.
- W2951435501 hasConcept C33676613 @default.
- W2951435501 hasConcept C33923547 @default.
- W2951435501 hasConcept C41008148 @default.
- W2951435501 hasConcept C55493867 @default.
- W2951435501 hasConcept C68693459 @default.
- W2951435501 hasConcept C77553402 @default.
- W2951435501 hasConceptScore W2951435501C104317684 @default.
- W2951435501 hasConceptScore W2951435501C112313634 @default.
- W2951435501 hasConceptScore W2951435501C114614502 @default.
- W2951435501 hasConceptScore W2951435501C118615104 @default.
- W2951435501 hasConceptScore W2951435501C127716648 @default.
- W2951435501 hasConceptScore W2951435501C134306372 @default.
- W2951435501 hasConceptScore W2951435501C150397156 @default.
- W2951435501 hasConceptScore W2951435501C177264268 @default.
- W2951435501 hasConceptScore W2951435501C17825722 @default.
- W2951435501 hasConceptScore W2951435501C185592680 @default.
- W2951435501 hasConceptScore W2951435501C188082640 @default.
- W2951435501 hasConceptScore W2951435501C199360897 @default.
- W2951435501 hasConceptScore W2951435501C2524010 @default.
- W2951435501 hasConceptScore W2951435501C33676613 @default.
- W2951435501 hasConceptScore W2951435501C33923547 @default.
- W2951435501 hasConceptScore W2951435501C41008148 @default.
- W2951435501 hasConceptScore W2951435501C55493867 @default.
- W2951435501 hasConceptScore W2951435501C68693459 @default.
- W2951435501 hasConceptScore W2951435501C77553402 @default.
- W2951435501 hasLocation W29514355011 @default.
- W2951435501 hasLocation W29514355012 @default.
- W2951435501 hasOpenAccess W2951435501 @default.
- W2951435501 hasPrimaryLocation W29514355011 @default.
- W2951435501 hasRelatedWork W1559170943 @default.
- W2951435501 hasRelatedWork W2042390260 @default.
- W2951435501 hasRelatedWork W2063165065 @default.
- W2951435501 hasRelatedWork W2147765817 @default.
- W2951435501 hasRelatedWork W2167163837 @default.
- W2951435501 hasRelatedWork W2596764499 @default.
- W2951435501 hasRelatedWork W2921083507 @default.
- W2951435501 hasRelatedWork W2947186141 @default.
- W2951435501 hasRelatedWork W2959518726 @default.
- W2951435501 hasRelatedWork W3134971466 @default.
- W2951435501 isParatext "false" @default.
- W2951435501 isRetracted "false" @default.
- W2951435501 magId "2951435501" @default.
- W2951435501 workType "article" @default.