Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951444282> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2951444282 abstract "Let $pi: Z ra X$ be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply-connected Lie group $G$. For any dominant weight $lambda$ consider the curve $Y = Z/Stab(lambda)$. The Kanev correspondence defines an abelian subvariety $P_lambda$ of the Jacobian of $Y$. We compute the type of the polarization of the restriction of the canonical principal polarization of $Jac(Y)$ to $P_lambda$ in some cases. In particular, in the case of the group $E_8$ we obtain families of Prym-Tyurin varieties. The main idea is the use of an abelianization map of the Donagi-Prym variety to the moduli stack of principal $G$-bundles on the curve $X$." @default.
- W2951444282 created "2019-06-27" @default.
- W2951444282 creator A5004696771 @default.
- W2951444282 creator A5034013045 @default.
- W2951444282 date "2007-06-12" @default.
- W2951444282 modified "2023-09-27" @default.
- W2951444282 title "Polarizations of Prym varieties for Weyl groups via abelianization" @default.
- W2951444282 cites W1571072992 @default.
- W2951444282 cites W2030221275 @default.
- W2951444282 cites W2052011341 @default.
- W2951444282 cites W2066329999 @default.
- W2951444282 cites W2068928045 @default.
- W2951444282 cites W2951739027 @default.
- W2951444282 hasPublicationYear "2007" @default.
- W2951444282 type Work @default.
- W2951444282 sameAs 2951444282 @default.
- W2951444282 citedByCount "0" @default.
- W2951444282 crossrefType "posted-content" @default.
- W2951444282 hasAuthorship W2951444282A5004696771 @default.
- W2951444282 hasAuthorship W2951444282A5034013045 @default.
- W2951444282 hasBestOaLocation W29514442821 @default.
- W2951444282 hasConcept C136119220 @default.
- W2951444282 hasConcept C202444582 @default.
- W2951444282 hasConcept C33923547 @default.
- W2951444282 hasConcept C41008148 @default.
- W2951444282 hasConceptScore W2951444282C136119220 @default.
- W2951444282 hasConceptScore W2951444282C202444582 @default.
- W2951444282 hasConceptScore W2951444282C33923547 @default.
- W2951444282 hasConceptScore W2951444282C41008148 @default.
- W2951444282 hasLocation W29514442821 @default.
- W2951444282 hasLocation W29514442822 @default.
- W2951444282 hasLocation W29514442823 @default.
- W2951444282 hasLocation W29514442824 @default.
- W2951444282 hasOpenAccess W2951444282 @default.
- W2951444282 hasPrimaryLocation W29514442821 @default.
- W2951444282 hasRelatedWork W1557945163 @default.
- W2951444282 hasRelatedWork W1985218657 @default.
- W2951444282 hasRelatedWork W1989920940 @default.
- W2951444282 hasRelatedWork W2036077645 @default.
- W2951444282 hasRelatedWork W2096753949 @default.
- W2951444282 hasRelatedWork W2963341196 @default.
- W2951444282 hasRelatedWork W2964292522 @default.
- W2951444282 hasRelatedWork W3103780039 @default.
- W2951444282 hasRelatedWork W3124205579 @default.
- W2951444282 hasRelatedWork W4249580765 @default.
- W2951444282 isParatext "false" @default.
- W2951444282 isRetracted "false" @default.
- W2951444282 magId "2951444282" @default.
- W2951444282 workType "article" @default.