Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951447401> ?p ?o ?g. }
- W2951447401 abstract "We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility." @default.
- W2951447401 created "2019-06-27" @default.
- W2951447401 creator A5030241627 @default.
- W2951447401 creator A5037316256 @default.
- W2951447401 creator A5079975633 @default.
- W2951447401 date "2012-04-12" @default.
- W2951447401 modified "2023-09-24" @default.
- W2951447401 title "Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation" @default.
- W2951447401 cites W1573820523 @default.
- W2951447401 cites W1638203394 @default.
- W2951447401 cites W1966955246 @default.
- W2951447401 cites W1986402544 @default.
- W2951447401 cites W2009184676 @default.
- W2951447401 cites W2020999234 @default.
- W2951447401 cites W2022873843 @default.
- W2951447401 cites W2023118766 @default.
- W2951447401 cites W2026933032 @default.
- W2951447401 cites W2042554576 @default.
- W2951447401 cites W2050556604 @default.
- W2951447401 cites W2054658115 @default.
- W2951447401 cites W2071284784 @default.
- W2951447401 cites W2082967074 @default.
- W2951447401 cites W2083042020 @default.
- W2951447401 cites W2086962710 @default.
- W2951447401 cites W2089726881 @default.
- W2951447401 cites W2098666275 @default.
- W2951447401 cites W2099111195 @default.
- W2951447401 cites W2102098892 @default.
- W2951447401 cites W2103539935 @default.
- W2951447401 cites W2103955025 @default.
- W2951447401 cites W2107745473 @default.
- W2951447401 cites W2107850525 @default.
- W2951447401 cites W2109449402 @default.
- W2951447401 cites W2110505738 @default.
- W2951447401 cites W2135625884 @default.
- W2951447401 cites W2135859872 @default.
- W2951447401 cites W2144015943 @default.
- W2951447401 cites W2145096794 @default.
- W2951447401 cites W2145482038 @default.
- W2951447401 cites W2147361252 @default.
- W2951447401 cites W2154304330 @default.
- W2951447401 cites W2159996091 @default.
- W2951447401 cites W2160547390 @default.
- W2951447401 cites W2163294786 @default.
- W2951447401 cites W2166670884 @default.
- W2951447401 cites W2168175751 @default.
- W2951447401 cites W2172172255 @default.
- W2951447401 cites W2289917018 @default.
- W2951447401 cites W2296616510 @default.
- W2951447401 cites W2543631487 @default.
- W2951447401 cites W2550925785 @default.
- W2951447401 cites W2950972483 @default.
- W2951447401 cites W2952289989 @default.
- W2951447401 cites W2953139536 @default.
- W2951447401 cites W2963206527 @default.
- W2951447401 doi "https://doi.org/10.48550/arxiv.1204.2611" @default.
- W2951447401 hasPublicationYear "2012" @default.
- W2951447401 type Work @default.
- W2951447401 sameAs 2951447401 @default.
- W2951447401 citedByCount "5" @default.
- W2951447401 countsByYear W29514474012012 @default.
- W2951447401 countsByYear W29514474012014 @default.
- W2951447401 countsByYear W29514474012016 @default.
- W2951447401 crossrefType "posted-content" @default.
- W2951447401 hasAuthorship W2951447401A5030241627 @default.
- W2951447401 hasAuthorship W2951447401A5037316256 @default.
- W2951447401 hasAuthorship W2951447401A5079975633 @default.
- W2951447401 hasBestOaLocation W29514474011 @default.
- W2951447401 hasConcept C105795698 @default.
- W2951447401 hasConcept C111350023 @default.
- W2951447401 hasConcept C111472728 @default.
- W2951447401 hasConcept C11413529 @default.
- W2951447401 hasConcept C119857082 @default.
- W2951447401 hasConcept C121332964 @default.
- W2951447401 hasConcept C124851039 @default.
- W2951447401 hasConcept C126255220 @default.
- W2951447401 hasConcept C134306372 @default.
- W2951447401 hasConcept C135252773 @default.
- W2951447401 hasConcept C138885662 @default.
- W2951447401 hasConcept C179799912 @default.
- W2951447401 hasConcept C183992945 @default.
- W2951447401 hasConcept C19499675 @default.
- W2951447401 hasConcept C199360897 @default.
- W2951447401 hasConcept C2779341405 @default.
- W2951447401 hasConcept C2779843651 @default.
- W2951447401 hasConcept C33923547 @default.
- W2951447401 hasConcept C41008148 @default.
- W2951447401 hasConcept C49781872 @default.
- W2951447401 hasConcept C62520636 @default.
- W2951447401 hasConcept C75553542 @default.
- W2951447401 hasConcept C9810830 @default.
- W2951447401 hasConcept C98763669 @default.
- W2951447401 hasConceptScore W2951447401C105795698 @default.
- W2951447401 hasConceptScore W2951447401C111350023 @default.
- W2951447401 hasConceptScore W2951447401C111472728 @default.
- W2951447401 hasConceptScore W2951447401C11413529 @default.
- W2951447401 hasConceptScore W2951447401C119857082 @default.
- W2951447401 hasConceptScore W2951447401C121332964 @default.
- W2951447401 hasConceptScore W2951447401C124851039 @default.
- W2951447401 hasConceptScore W2951447401C126255220 @default.