Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951453584> ?p ?o ?g. }
- W2951453584 abstract "We present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but also to ensure these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes $e^+e^-to Z to l^+l^-$ and $p p to tbar{t} $ including the decay of the top quarks and a simulation of the detector response. We find that the tested GAN architectures and the standard VAE are not able to learn the distributions precisely. By buffering density information of encoded Monte Carlo events given the encoder of a VAE we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g. for the phase space integration of matrix elements in quantum field theories." @default.
- W2951453584 created "2019-06-27" @default.
- W2951453584 creator A5000529678 @default.
- W2951453584 creator A5014235133 @default.
- W2951453584 creator A5014284289 @default.
- W2951453584 creator A5032734295 @default.
- W2951453584 creator A5053618952 @default.
- W2951453584 creator A5055198872 @default.
- W2951453584 creator A5063569680 @default.
- W2951453584 creator A5082752831 @default.
- W2951453584 creator A5086082507 @default.
- W2951453584 date "2019-01-03" @default.
- W2951453584 modified "2023-09-27" @default.
- W2951453584 title "Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer" @default.
- W2951453584 cites W1555148682 @default.
- W2951453584 cites W1667652561 @default.
- W2951453584 cites W1688143822 @default.
- W2951453584 cites W1866230956 @default.
- W2951453584 cites W1959608418 @default.
- W2951453584 cites W1980726110 @default.
- W2951453584 cites W1987435915 @default.
- W2951453584 cites W2016801295 @default.
- W2951453584 cites W2028806138 @default.
- W2951453584 cites W2101234009 @default.
- W2951453584 cites W2108060701 @default.
- W2951453584 cites W2110389632 @default.
- W2951453584 cites W2118020555 @default.
- W2951453584 cites W2125102738 @default.
- W2951453584 cites W2129078609 @default.
- W2951453584 cites W2176412452 @default.
- W2951453584 cites W2194775991 @default.
- W2951453584 cites W2271840356 @default.
- W2951453584 cites W2294798173 @default.
- W2951453584 cites W2431962807 @default.
- W2951453584 cites W2565214501 @default.
- W2951453584 cites W2593414223 @default.
- W2951453584 cites W2614083378 @default.
- W2951453584 cites W2619503996 @default.
- W2951453584 cites W2621084749 @default.
- W2951453584 cites W2632772789 @default.
- W2951453584 cites W2728024376 @default.
- W2951453584 cites W2776855315 @default.
- W2951453584 cites W2798416289 @default.
- W2951453584 cites W2807692250 @default.
- W2951453584 cites W2884775584 @default.
- W2951453584 cites W2889983866 @default.
- W2951453584 cites W2896377340 @default.
- W2951453584 cites W2909775062 @default.
- W2951453584 cites W2911290044 @default.
- W2951453584 cites W2953651675 @default.
- W2951453584 cites W2962879692 @default.
- W2951453584 cites W2962892300 @default.
- W2951453584 cites W2963073614 @default.
- W2951453584 cites W2963090522 @default.
- W2951453584 cites W2963373786 @default.
- W2951453584 cites W2963446712 @default.
- W2951453584 cites W2963981733 @default.
- W2951453584 cites W2964121744 @default.
- W2951453584 cites W2998758436 @default.
- W2951453584 cites W3103963833 @default.
- W2951453584 cites W3207342693 @default.
- W2951453584 hasPublicationYear "2019" @default.
- W2951453584 type Work @default.
- W2951453584 sameAs 2951453584 @default.
- W2951453584 citedByCount "13" @default.
- W2951453584 countsByYear W29514535842020 @default.
- W2951453584 countsByYear W29514535842021 @default.
- W2951453584 crossrefType "posted-content" @default.
- W2951453584 hasAuthorship W2951453584A5000529678 @default.
- W2951453584 hasAuthorship W2951453584A5014235133 @default.
- W2951453584 hasAuthorship W2951453584A5014284289 @default.
- W2951453584 hasAuthorship W2951453584A5032734295 @default.
- W2951453584 hasAuthorship W2951453584A5053618952 @default.
- W2951453584 hasAuthorship W2951453584A5055198872 @default.
- W2951453584 hasAuthorship W2951453584A5063569680 @default.
- W2951453584 hasAuthorship W2951453584A5082752831 @default.
- W2951453584 hasAuthorship W2951453584A5086082507 @default.
- W2951453584 hasConcept C105795698 @default.
- W2951453584 hasConcept C11413529 @default.
- W2951453584 hasConcept C121332964 @default.
- W2951453584 hasConcept C121864883 @default.
- W2951453584 hasConcept C140779682 @default.
- W2951453584 hasConcept C19499675 @default.
- W2951453584 hasConcept C2779662365 @default.
- W2951453584 hasConcept C33923547 @default.
- W2951453584 hasConcept C41008148 @default.
- W2951453584 hasConcept C52740198 @default.
- W2951453584 hasConcept C62520636 @default.
- W2951453584 hasConcept C76155785 @default.
- W2951453584 hasConcept C94915269 @default.
- W2951453584 hasConceptScore W2951453584C105795698 @default.
- W2951453584 hasConceptScore W2951453584C11413529 @default.
- W2951453584 hasConceptScore W2951453584C121332964 @default.
- W2951453584 hasConceptScore W2951453584C121864883 @default.
- W2951453584 hasConceptScore W2951453584C140779682 @default.
- W2951453584 hasConceptScore W2951453584C19499675 @default.
- W2951453584 hasConceptScore W2951453584C2779662365 @default.
- W2951453584 hasConceptScore W2951453584C33923547 @default.
- W2951453584 hasConceptScore W2951453584C41008148 @default.
- W2951453584 hasConceptScore W2951453584C52740198 @default.