Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951473319> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2951473319 endingPage "179" @default.
- W2951473319 startingPage "179" @default.
- W2951473319 abstract "The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum textit{a posteriori} estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data." @default.
- W2951473319 created "2019-06-27" @default.
- W2951473319 creator A5057767094 @default.
- W2951473319 creator A5066536122 @default.
- W2951473319 date "2014-01-01" @default.
- W2951473319 modified "2023-09-23" @default.
- W2951473319 title "Bayesian mixture of Plackett-Luce models for partially ranked data" @default.
- W2951473319 hasPublicationYear "2014" @default.
- W2951473319 type Work @default.
- W2951473319 sameAs 2951473319 @default.
- W2951473319 citedByCount "0" @default.
- W2951473319 crossrefType "journal-article" @default.
- W2951473319 hasAuthorship W2951473319A5057767094 @default.
- W2951473319 hasAuthorship W2951473319A5066536122 @default.
- W2951473319 hasConcept C105795698 @default.
- W2951473319 hasConcept C107673813 @default.
- W2951473319 hasConcept C117251300 @default.
- W2951473319 hasConcept C119857082 @default.
- W2951473319 hasConcept C158424031 @default.
- W2951473319 hasConcept C160234255 @default.
- W2951473319 hasConcept C162376815 @default.
- W2951473319 hasConcept C189430467 @default.
- W2951473319 hasConcept C33923547 @default.
- W2951473319 hasConcept C41008148 @default.
- W2951473319 hasConcept C61224824 @default.
- W2951473319 hasConceptScore W2951473319C105795698 @default.
- W2951473319 hasConceptScore W2951473319C107673813 @default.
- W2951473319 hasConceptScore W2951473319C117251300 @default.
- W2951473319 hasConceptScore W2951473319C119857082 @default.
- W2951473319 hasConceptScore W2951473319C158424031 @default.
- W2951473319 hasConceptScore W2951473319C160234255 @default.
- W2951473319 hasConceptScore W2951473319C162376815 @default.
- W2951473319 hasConceptScore W2951473319C189430467 @default.
- W2951473319 hasConceptScore W2951473319C33923547 @default.
- W2951473319 hasConceptScore W2951473319C41008148 @default.
- W2951473319 hasConceptScore W2951473319C61224824 @default.
- W2951473319 hasLocation W29514733191 @default.
- W2951473319 hasOpenAccess W2951473319 @default.
- W2951473319 hasPrimaryLocation W29514733191 @default.
- W2951473319 hasRelatedWork W1033710356 @default.
- W2951473319 hasRelatedWork W1614270630 @default.
- W2951473319 hasRelatedWork W1776114165 @default.
- W2951473319 hasRelatedWork W1863459886 @default.
- W2951473319 hasRelatedWork W2026299355 @default.
- W2951473319 hasRelatedWork W2075655242 @default.
- W2951473319 hasRelatedWork W2116609268 @default.
- W2951473319 hasRelatedWork W2120289336 @default.
- W2951473319 hasRelatedWork W2229082893 @default.
- W2951473319 hasRelatedWork W2346325134 @default.
- W2951473319 hasRelatedWork W2360888238 @default.
- W2951473319 hasRelatedWork W2981977985 @default.
- W2951473319 hasRelatedWork W3098316600 @default.
- W2951473319 hasRelatedWork W3099791880 @default.
- W2951473319 hasRelatedWork W3121172468 @default.
- W2951473319 hasRelatedWork W3155027669 @default.
- W2951473319 hasRelatedWork W50566976 @default.
- W2951473319 hasRelatedWork W584954699 @default.
- W2951473319 hasRelatedWork W598752062 @default.
- W2951473319 hasRelatedWork W619571101 @default.
- W2951473319 isParatext "false" @default.
- W2951473319 isRetracted "false" @default.
- W2951473319 magId "2951473319" @default.
- W2951473319 workType "article" @default.