Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951531519> ?p ?o ?g. }
- W2951531519 endingPage "1392" @default.
- W2951531519 startingPage "1369" @default.
- W2951531519 abstract "ABSTRACT Coalescence of neutron stars (NSs) gives rise to kilonova, thermal emission powered by radioactive decays of freshly synthesized r-process nuclei. Although observational properties are largely affected by bound–bound opacities of r-process elements, available atomic data have been limited. In this paper, we study element-to-element variation of the opacities in the ejecta of NS mergers by performing systematic atomic structure calculations of r-process elements for the first time. We show that the distributions of energy levels tend to be higher as electron occupation increases for each electron shell due to the larger energy spacing caused by larger effects of spin–orbit and electron–electron interactions. As a result, elements with a fewer number of electrons in the outermost shells tend to give larger contributions to the bound–bound opacities. This implies that Fe is not representative for the opacities of light r-process elements. The average opacities for the mixture of r-process elements are found to be κ ∼ 20–30 cm2 g−1 for the electron fraction of Ye ≤ 0.20, κ ∼ 3–5 cm2 g−1 for Ye = 0.25–0.35, and κ ∼ 1 cm2 g−1 for Ye = 0.40 at $T = 5000!-!10, 000$ K, and they steeply decrease at lower temperature. We show that, even with the same abundance or Ye, the opacity in the ejecta changes with time by one order of magnitude from 1 to 10 d after the merger. Our radiative transfer simulations with the new opacity data confirm that ejecta with a high electron fraction (Ye ≳ 0.25, with no lanthanide) are needed to explain the early, blue emission in GW170817/AT2017gfo while lanthanide-rich ejecta (with a mass fraction of lanthanides ∼5 × 10−3) reproduce the long-lasting near-infrared emission." @default.
- W2951531519 created "2019-06-27" @default.
- W2951531519 creator A5021796469 @default.
- W2951531519 creator A5051580375 @default.
- W2951531519 creator A5074049487 @default.
- W2951531519 creator A5088348055 @default.
- W2951531519 date "2020-06-05" @default.
- W2951531519 modified "2023-10-17" @default.
- W2951531519 title "Systematic opacity calculations for kilonovae" @default.
- W2951531519 cites W1613044524 @default.
- W2951531519 cites W1851157365 @default.
- W2951531519 cites W1972481559 @default.
- W2951531519 cites W1977865523 @default.
- W2951531519 cites W2006747814 @default.
- W2951531519 cites W2007323734 @default.
- W2951531519 cites W2013598075 @default.
- W2951531519 cites W2036438218 @default.
- W2951531519 cites W2039045484 @default.
- W2951531519 cites W2063665726 @default.
- W2951531519 cites W2077007583 @default.
- W2951531519 cites W2079836916 @default.
- W2951531519 cites W2092217182 @default.
- W2951531519 cites W2102912510 @default.
- W2951531519 cites W2106295983 @default.
- W2951531519 cites W2106818190 @default.
- W2951531519 cites W2132963711 @default.
- W2951531519 cites W2161602353 @default.
- W2951531519 cites W2187667962 @default.
- W2951531519 cites W2234367346 @default.
- W2951531519 cites W2294018305 @default.
- W2951531519 cites W2397772701 @default.
- W2951531519 cites W2501068601 @default.
- W2951531519 cites W2572029006 @default.
- W2951531519 cites W2619320676 @default.
- W2951531519 cites W2763288801 @default.
- W2951531519 cites W2763877873 @default.
- W2951531519 cites W2763995406 @default.
- W2951531519 cites W2765081049 @default.
- W2951531519 cites W2765180549 @default.
- W2951531519 cites W2765302758 @default.
- W2951531519 cites W2765333366 @default.
- W2951531519 cites W2765476133 @default.
- W2951531519 cites W2765595587 @default.
- W2951531519 cites W2765909478 @default.
- W2951531519 cites W2766054309 @default.
- W2951531519 cites W2766140821 @default.
- W2951531519 cites W2766232448 @default.
- W2951531519 cites W2766378524 @default.
- W2951531519 cites W2766754978 @default.
- W2951531519 cites W2766776263 @default.
- W2951531519 cites W2766930723 @default.
- W2951531519 cites W2766948326 @default.
- W2951531519 cites W2769167841 @default.
- W2951531519 cites W2775700050 @default.
- W2951531519 cites W2783251299 @default.
- W2951531519 cites W2794686649 @default.
- W2951531519 cites W2805141533 @default.
- W2951531519 cites W2885157045 @default.
- W2951531519 cites W2911227392 @default.
- W2951531519 cites W2940065607 @default.
- W2951531519 cites W2946294461 @default.
- W2951531519 cites W2967912534 @default.
- W2951531519 cites W2981754620 @default.
- W2951531519 cites W3008874137 @default.
- W2951531519 cites W3035572042 @default.
- W2951531519 cites W3098422777 @default.
- W2951531519 cites W3098682250 @default.
- W2951531519 cites W3098712443 @default.
- W2951531519 cites W3098903915 @default.
- W2951531519 cites W3099131260 @default.
- W2951531519 cites W3099436739 @default.
- W2951531519 cites W3099966284 @default.
- W2951531519 cites W3100030802 @default.
- W2951531519 cites W3100285502 @default.
- W2951531519 cites W3100421444 @default.
- W2951531519 cites W3101366092 @default.
- W2951531519 cites W3101477063 @default.
- W2951531519 cites W3101559708 @default.
- W2951531519 cites W3101823224 @default.
- W2951531519 cites W3101888945 @default.
- W2951531519 cites W3101914299 @default.
- W2951531519 cites W3102421132 @default.
- W2951531519 cites W3102839431 @default.
- W2951531519 cites W3102914012 @default.
- W2951531519 cites W3104042330 @default.
- W2951531519 cites W3104361777 @default.
- W2951531519 cites W3104815301 @default.
- W2951531519 cites W3105266888 @default.
- W2951531519 cites W3105715971 @default.
- W2951531519 cites W3128946631 @default.
- W2951531519 cites W4211256362 @default.
- W2951531519 cites W4214774345 @default.
- W2951531519 doi "https://doi.org/10.1093/mnras/staa1576" @default.
- W2951531519 hasPublicationYear "2020" @default.
- W2951531519 type Work @default.
- W2951531519 sameAs 2951531519 @default.
- W2951531519 citedByCount "128" @default.
- W2951531519 countsByYear W29515315192020 @default.