Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951569227> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2951569227 abstract "We introduce the (global) q-Whittaker function as the limit at t=0 of the q,t-spherical function extending the symmetric Macdonald polynomials to arbitrary eigenvalues. The construction heavily depends on the technique of the q-Gaussians developed by the author (and Stokman in the non-reduced case). In this approach, the q-Whittaker function is given by a series convergent everywhere, a kind of generating function for multi-dimensional q-Hermite polynomials (closely related to the level 1 Demazure characters). One of the applications is a q-version of the Shintani- Casselman- Shalika formula, which appeared directly connected with q-Mehta- Macdonald identities in terms of the Jackson integrals. This formula generalizes that of type A due to Gerasimov et al. to arbitrary reduced root systems. At the end of the paper, we obtain a q,t-counterpart of the Harish-Chandra asymptotic formula for the spherical functions, including the Whittaker limit." @default.
- W2951569227 created "2019-06-27" @default.
- W2951569227 creator A5090750075 @default.
- W2951569227 date "2009-01-01" @default.
- W2951569227 modified "2023-10-14" @default.
- W2951569227 title "Whittaker Limits of Difference Spherical Functions" @default.
- W2951569227 cites W1497293493 @default.
- W2951569227 cites W2037102511 @default.
- W2951569227 cites W2573960099 @default.
- W2951569227 cites W2711012087 @default.
- W2951569227 doi "https://doi.org/10.17615/dbk7-ae32" @default.
- W2951569227 hasPublicationYear "2009" @default.
- W2951569227 type Work @default.
- W2951569227 sameAs 2951569227 @default.
- W2951569227 citedByCount "3" @default.
- W2951569227 countsByYear W29515692272013 @default.
- W2951569227 crossrefType "journal-article" @default.
- W2951569227 hasAuthorship W2951569227A5090750075 @default.
- W2951569227 hasBestOaLocation W29515692271 @default.
- W2951569227 hasConcept C2777686260 @default.
- W2951569227 hasConcept C29694066 @default.
- W2951569227 hasConcept C33923547 @default.
- W2951569227 hasConcept C71924100 @default.
- W2951569227 hasConceptScore W2951569227C2777686260 @default.
- W2951569227 hasConceptScore W2951569227C29694066 @default.
- W2951569227 hasConceptScore W2951569227C33923547 @default.
- W2951569227 hasConceptScore W2951569227C71924100 @default.
- W2951569227 hasLocation W29515692271 @default.
- W2951569227 hasLocation W29515692272 @default.
- W2951569227 hasOpenAccess W2951569227 @default.
- W2951569227 hasPrimaryLocation W29515692271 @default.
- W2951569227 hasRelatedWork W1974891317 @default.
- W2951569227 hasRelatedWork W1989560957 @default.
- W2951569227 hasRelatedWork W2044189972 @default.
- W2951569227 hasRelatedWork W2063488590 @default.
- W2951569227 hasRelatedWork W2102781400 @default.
- W2951569227 hasRelatedWork W2313400459 @default.
- W2951569227 hasRelatedWork W2913765211 @default.
- W2951569227 hasRelatedWork W4225152035 @default.
- W2951569227 hasRelatedWork W4230623537 @default.
- W2951569227 hasRelatedWork W4245490552 @default.
- W2951569227 isParatext "false" @default.
- W2951569227 isRetracted "false" @default.
- W2951569227 magId "2951569227" @default.
- W2951569227 workType "article" @default.