Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951569341> ?p ?o ?g. }
- W2951569341 abstract "Crop production needs to increase in a sustainable manner to meet the growing global demand for food. To identify crop varieties with high yield potential, plant scientists and breeders evaluate the performance of hundreds of lines in multiple locations over several years. To facilitate the process of selecting advanced varieties, an automated framework was developed in this study. A hyperspectral camera was mounted on an unmanned aerial vehicle to collect aerial imagery with high spatial and spectral resolution. Aerial images were captured in two consecutive growing seasons from three experimental yield fields composed of hundreds experimental plots (1x2.4 meter), each contained a single wheat line. The grain of more than thousand wheat plots was harvested by a combine, weighed, and recorded as the ground truth data. To leverage the high spatial resolution and investigate the yield variation within the plots, images of plots were divided into sub-plots by integrating image processing techniques and spectral mixture analysis with the expert domain knowledge. Afterwards, the sub-plot dataset was divided into train, validation, and test sets using stratified sampling. Subsequent to extracting features from each sub-plot, deep neural networks were trained for yield estimation. The coefficient of determination for predicting the yield of the test dataset at sub-plot scale was 0.79 with root mean square error of 5.90 grams. In addition to providing insights into yield variation at sub-plot scale, the proposed framework can facilitate the process of high-throughput yield phenotyping as a valuable decision support tool. It offers the possibility of (i) remote visual inspection of the plots, (ii) studying the effect of crop density on yield, and (iii) optimizing plot size to investigate more lines in a dedicated field each year." @default.
- W2951569341 created "2019-06-27" @default.
- W2951569341 creator A5025292204 @default.
- W2951569341 creator A5064694066 @default.
- W2951569341 creator A5070057804 @default.
- W2951569341 date "2019-06-23" @default.
- W2951569341 modified "2023-09-23" @default.
- W2951569341 title "Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat" @default.
- W2951569341 cites W116253160 @default.
- W2951569341 cites W1533861849 @default.
- W2951569341 cites W1665214252 @default.
- W2951569341 cites W1984792953 @default.
- W2951569341 cites W1987500411 @default.
- W2951569341 cites W1995602199 @default.
- W2951569341 cites W2000613913 @default.
- W2951569341 cites W2021086890 @default.
- W2951569341 cites W2075667492 @default.
- W2951569341 cites W2114891756 @default.
- W2951569341 cites W2118250561 @default.
- W2951569341 cites W2118357699 @default.
- W2951569341 cites W2134328014 @default.
- W2951569341 cites W2143704098 @default.
- W2951569341 cites W2145911219 @default.
- W2951569341 cites W2146502635 @default.
- W2951569341 cites W2151649773 @default.
- W2951569341 cites W2154579312 @default.
- W2951569341 cites W2156387975 @default.
- W2951569341 cites W2163605009 @default.
- W2951569341 cites W2167869331 @default.
- W2951569341 cites W2185489349 @default.
- W2951569341 cites W2557283755 @default.
- W2951569341 cites W2603228623 @default.
- W2951569341 cites W2704880239 @default.
- W2951569341 cites W2789833233 @default.
- W2951569341 cites W2790099498 @default.
- W2951569341 cites W2888295997 @default.
- W2951569341 cites W2895277873 @default.
- W2951569341 cites W2919115771 @default.
- W2951569341 cites W2964121744 @default.
- W2951569341 hasPublicationYear "2019" @default.
- W2951569341 type Work @default.
- W2951569341 sameAs 2951569341 @default.
- W2951569341 citedByCount "0" @default.
- W2951569341 crossrefType "posted-content" @default.
- W2951569341 hasAuthorship W2951569341A5025292204 @default.
- W2951569341 hasAuthorship W2951569341A5064694066 @default.
- W2951569341 hasAuthorship W2951569341A5070057804 @default.
- W2951569341 hasConcept C105795698 @default.
- W2951569341 hasConcept C118518473 @default.
- W2951569341 hasConcept C120217122 @default.
- W2951569341 hasConcept C146849305 @default.
- W2951569341 hasConcept C153083717 @default.
- W2951569341 hasConcept C153180895 @default.
- W2951569341 hasConcept C154945302 @default.
- W2951569341 hasConcept C159078339 @default.
- W2951569341 hasConcept C166957645 @default.
- W2951569341 hasConcept C167651023 @default.
- W2951569341 hasConcept C205649164 @default.
- W2951569341 hasConcept C31462909 @default.
- W2951569341 hasConcept C33923547 @default.
- W2951569341 hasConcept C39432304 @default.
- W2951569341 hasConcept C41008148 @default.
- W2951569341 hasConcept C62649853 @default.
- W2951569341 hasConceptScore W2951569341C105795698 @default.
- W2951569341 hasConceptScore W2951569341C118518473 @default.
- W2951569341 hasConceptScore W2951569341C120217122 @default.
- W2951569341 hasConceptScore W2951569341C146849305 @default.
- W2951569341 hasConceptScore W2951569341C153083717 @default.
- W2951569341 hasConceptScore W2951569341C153180895 @default.
- W2951569341 hasConceptScore W2951569341C154945302 @default.
- W2951569341 hasConceptScore W2951569341C159078339 @default.
- W2951569341 hasConceptScore W2951569341C166957645 @default.
- W2951569341 hasConceptScore W2951569341C167651023 @default.
- W2951569341 hasConceptScore W2951569341C205649164 @default.
- W2951569341 hasConceptScore W2951569341C31462909 @default.
- W2951569341 hasConceptScore W2951569341C33923547 @default.
- W2951569341 hasConceptScore W2951569341C39432304 @default.
- W2951569341 hasConceptScore W2951569341C41008148 @default.
- W2951569341 hasConceptScore W2951569341C62649853 @default.
- W2951569341 hasOpenAccess W2951569341 @default.
- W2951569341 hasRelatedWork W2000956821 @default.
- W2951569341 hasRelatedWork W2603228623 @default.
- W2951569341 hasRelatedWork W2618732405 @default.
- W2951569341 hasRelatedWork W2742805393 @default.
- W2951569341 hasRelatedWork W2791110299 @default.
- W2951569341 hasRelatedWork W2793761229 @default.
- W2951569341 hasRelatedWork W2971456001 @default.
- W2951569341 hasRelatedWork W3003925677 @default.
- W2951569341 hasRelatedWork W3007045993 @default.
- W2951569341 hasRelatedWork W3015117847 @default.
- W2951569341 hasRelatedWork W3034067006 @default.
- W2951569341 hasRelatedWork W3034431953 @default.
- W2951569341 hasRelatedWork W3082114226 @default.
- W2951569341 hasRelatedWork W3098818766 @default.
- W2951569341 hasRelatedWork W3118917397 @default.
- W2951569341 hasRelatedWork W3169469595 @default.
- W2951569341 hasRelatedWork W3194199759 @default.
- W2951569341 hasRelatedWork W3194684502 @default.
- W2951569341 hasRelatedWork W3205833991 @default.
- W2951569341 hasRelatedWork W3180131834 @default.