Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951676304> ?p ?o ?g. }
- W2951676304 endingPage "3304" @default.
- W2951676304 startingPage "3291" @default.
- W2951676304 abstract "Although algebraic graph theory-based models have been widely applied in physical modeling and molecular studies, they are typically incompetent in the analysis and prediction of biomolecular properties, confirming the common belief that “one cannot hear the shape of a drum”. A new development in the century-old question about the spectrum–geometry relationship is provided. Novel algebraic graph learning score (AGL-Score) models are proposed to encode high-dimensional physical and biological information into intrinsically low-dimensional representations. The proposed AGL-Score models employ multiscale weighted colored subgraphs to describe crucial molecular and biomolecular interactions in terms of graph invariants derived from graph Laplacian, its pseudo-inverse, and adjacency matrices. Additionally, AGL-Score models are integrated with an advanced machine learning algorithm to predict biomolecular macroscopic properties from the low-dimensional graph representation of biomolecular structures. The proposed AGL-Score models are extensively validated for their scoring power, ranking power, docking power, and screening power via a number of benchmark datasets, namely CASF-2007, CASF-2013, and CASF-2016. Numerical results indicate that the proposed AGL-Score models are able to outperform other state-of-the-art scoring functions in protein–ligand binding scoring, ranking, docking, and screening. This study indicates that machine learning methods are powerful tools for molecular docking and virtual screening. It also indicates that spectral geometry or spectral graph theory has the ability to infer geometric properties." @default.
- W2951676304 created "2019-06-27" @default.
- W2951676304 creator A5019200619 @default.
- W2951676304 creator A5038778212 @default.
- W2951676304 date "2019-06-18" @default.
- W2951676304 modified "2023-10-16" @default.
- W2951676304 title "AGL-Score: Algebraic Graph Learning Score for Protein–Ligand Binding Scoring, Ranking, Docking, and Screening" @default.
- W2951676304 cites W1212579592 @default.
- W2951676304 cites W1527782499 @default.
- W2951676304 cites W1605578858 @default.
- W2951676304 cites W161216184 @default.
- W2951676304 cites W1968407616 @default.
- W2951676304 cites W1973191530 @default.
- W2951676304 cites W1974141927 @default.
- W2951676304 cites W1974809008 @default.
- W2951676304 cites W1976804014 @default.
- W2951676304 cites W1983304433 @default.
- W2951676304 cites W1991605720 @default.
- W2951676304 cites W1992441011 @default.
- W2951676304 cites W1993403967 @default.
- W2951676304 cites W1997310186 @default.
- W2951676304 cites W1998031351 @default.
- W2951676304 cites W2000462523 @default.
- W2951676304 cites W2006927892 @default.
- W2951676304 cites W2012084558 @default.
- W2951676304 cites W2013085020 @default.
- W2951676304 cites W2014204432 @default.
- W2951676304 cites W2015403140 @default.
- W2951676304 cites W2022998385 @default.
- W2951676304 cites W2025844353 @default.
- W2951676304 cites W2040990879 @default.
- W2951676304 cites W2044877050 @default.
- W2951676304 cites W2049185580 @default.
- W2951676304 cites W2050210602 @default.
- W2951676304 cites W2050456292 @default.
- W2951676304 cites W2060907307 @default.
- W2951676304 cites W2062950273 @default.
- W2951676304 cites W2073021822 @default.
- W2951676304 cites W2073201685 @default.
- W2951676304 cites W2080870633 @default.
- W2951676304 cites W2084521509 @default.
- W2951676304 cites W2092532075 @default.
- W2951676304 cites W2092723276 @default.
- W2951676304 cites W2093547815 @default.
- W2951676304 cites W2101017457 @default.
- W2951676304 cites W2102679425 @default.
- W2951676304 cites W2103459989 @default.
- W2951676304 cites W2105527266 @default.
- W2951676304 cites W2113328244 @default.
- W2951676304 cites W2113994268 @default.
- W2951676304 cites W2114779636 @default.
- W2951676304 cites W2115318272 @default.
- W2951676304 cites W2118587156 @default.
- W2951676304 cites W2120898782 @default.
- W2951676304 cites W2125304058 @default.
- W2951676304 cites W2134967712 @default.
- W2951676304 cites W2135029507 @default.
- W2951676304 cites W2140889378 @default.
- W2951676304 cites W2144044408 @default.
- W2951676304 cites W2148512505 @default.
- W2951676304 cites W2155275960 @default.
- W2951676304 cites W2162166182 @default.
- W2951676304 cites W2428593791 @default.
- W2951676304 cites W2485996763 @default.
- W2951676304 cites W2550887636 @default.
- W2951676304 cites W2553710452 @default.
- W2951676304 cites W2594183968 @default.
- W2951676304 cites W2600971009 @default.
- W2951676304 cites W2604303204 @default.
- W2951676304 cites W2610142609 @default.
- W2951676304 cites W2725970836 @default.
- W2951676304 cites W2733638363 @default.
- W2951676304 cites W2741292700 @default.
- W2951676304 cites W2781821160 @default.
- W2951676304 cites W2784213390 @default.
- W2951676304 cites W2786477584 @default.
- W2951676304 cites W2792758786 @default.
- W2951676304 cites W2889677957 @default.
- W2951676304 cites W2902812092 @default.
- W2951676304 cites W2963833291 @default.
- W2951676304 cites W2963883198 @default.
- W2951676304 cites W2963969719 @default.
- W2951676304 cites W3013843370 @default.
- W2951676304 cites W3100171530 @default.
- W2951676304 cites W3103794142 @default.
- W2951676304 cites W3146467503 @default.
- W2951676304 cites W4238452917 @default.
- W2951676304 cites W605757856 @default.
- W2951676304 doi "https://doi.org/10.1021/acs.jcim.9b00334" @default.
- W2951676304 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6664294" @default.
- W2951676304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31257871" @default.
- W2951676304 hasPublicationYear "2019" @default.
- W2951676304 type Work @default.
- W2951676304 sameAs 2951676304 @default.
- W2951676304 citedByCount "137" @default.
- W2951676304 countsByYear W29516763042019 @default.
- W2951676304 countsByYear W29516763042020 @default.
- W2951676304 countsByYear W29516763042021 @default.