Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951697025> ?p ?o ?g. }
- W2951697025 endingPage "115594" @default.
- W2951697025 startingPage "115594" @default.
- W2951697025 abstract "In this study for exploring the pyrolysis mechanism and kinetics prediction, distributed activation energy models (DAEMs) were employed and developed to fit the pyrolysis processes of three typical polymers, PMMA (polymethyl methacrylate), PS (polystyrene), and RPU (rigid polyurethane). Four kinds of activation energy distributions covering Gaussian, Logistic, Uniform, and Weibull were selected to explore the best models with first-order and nth-order reaction function. Each model was fitted with both extracted experimental α and dα/dT data at three heating rates simultaneously to avoid the ill-conditioned behavior. Based on the obtained models, important characteristics and relationships of these models were discussed with a best model selected. In addition, the best model was then validated with isoconversional method and sensitivity of the optimal parameters was estimated." @default.
- W2951697025 created "2019-06-27" @default.
- W2951697025 creator A5025868762 @default.
- W2951697025 creator A5049264813 @default.
- W2951697025 creator A5081429295 @default.
- W2951697025 creator A5085290375 @default.
- W2951697025 creator A5089044986 @default.
- W2951697025 date "2019-10-01" @default.
- W2951697025 modified "2023-10-17" @default.
- W2951697025 title "Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis" @default.
- W2951697025 cites W1968584764 @default.
- W2951697025 cites W1970751547 @default.
- W2951697025 cites W1970807979 @default.
- W2951697025 cites W1987602790 @default.
- W2951697025 cites W1990146840 @default.
- W2951697025 cites W1994763065 @default.
- W2951697025 cites W2003611190 @default.
- W2951697025 cites W2005071129 @default.
- W2951697025 cites W2014925878 @default.
- W2951697025 cites W2015939323 @default.
- W2951697025 cites W2023843762 @default.
- W2951697025 cites W2029842684 @default.
- W2951697025 cites W2030706049 @default.
- W2951697025 cites W2041862353 @default.
- W2951697025 cites W2052170704 @default.
- W2951697025 cites W2052728506 @default.
- W2951697025 cites W2054876755 @default.
- W2951697025 cites W2056104513 @default.
- W2951697025 cites W2058610391 @default.
- W2951697025 cites W2062468100 @default.
- W2951697025 cites W2064845725 @default.
- W2951697025 cites W2065589167 @default.
- W2951697025 cites W2067868403 @default.
- W2951697025 cites W2075622727 @default.
- W2951697025 cites W2076611253 @default.
- W2951697025 cites W2088847856 @default.
- W2951697025 cites W2090573029 @default.
- W2951697025 cites W2091857923 @default.
- W2951697025 cites W2093342099 @default.
- W2951697025 cites W2137746912 @default.
- W2951697025 cites W2160941405 @default.
- W2951697025 cites W2163659603 @default.
- W2951697025 cites W2318721791 @default.
- W2951697025 cites W2344002616 @default.
- W2951697025 cites W2401111526 @default.
- W2951697025 cites W2464270725 @default.
- W2951697025 cites W2556543275 @default.
- W2951697025 cites W2743695560 @default.
- W2951697025 cites W2773949105 @default.
- W2951697025 cites W2784308950 @default.
- W2951697025 cites W2792770954 @default.
- W2951697025 cites W2794971659 @default.
- W2951697025 cites W2795317587 @default.
- W2951697025 cites W2805951765 @default.
- W2951697025 cites W2886299735 @default.
- W2951697025 cites W2889083233 @default.
- W2951697025 cites W2897266093 @default.
- W2951697025 cites W2897477481 @default.
- W2951697025 cites W2904755328 @default.
- W2951697025 cites W2921173054 @default.
- W2951697025 cites W3157668902 @default.
- W2951697025 cites W416270167 @default.
- W2951697025 doi "https://doi.org/10.1016/j.fuel.2019.06.002" @default.
- W2951697025 hasPublicationYear "2019" @default.
- W2951697025 type Work @default.
- W2951697025 sameAs 2951697025 @default.
- W2951697025 citedByCount "29" @default.
- W2951697025 countsByYear W29516970252019 @default.
- W2951697025 countsByYear W29516970252020 @default.
- W2951697025 countsByYear W29516970252021 @default.
- W2951697025 countsByYear W29516970252022 @default.
- W2951697025 countsByYear W29516970252023 @default.
- W2951697025 crossrefType "journal-article" @default.
- W2951697025 hasAuthorship W2951697025A5025868762 @default.
- W2951697025 hasAuthorship W2951697025A5049264813 @default.
- W2951697025 hasAuthorship W2951697025A5081429295 @default.
- W2951697025 hasAuthorship W2951697025A5085290375 @default.
- W2951697025 hasAuthorship W2951697025A5089044986 @default.
- W2951697025 hasConcept C105795698 @default.
- W2951697025 hasConcept C121332964 @default.
- W2951697025 hasConcept C127413603 @default.
- W2951697025 hasConcept C147789679 @default.
- W2951697025 hasConcept C154945302 @default.
- W2951697025 hasConcept C159985019 @default.
- W2951697025 hasConcept C173291955 @default.
- W2951697025 hasConcept C185592680 @default.
- W2951697025 hasConcept C186060115 @default.
- W2951697025 hasConcept C192562407 @default.
- W2951697025 hasConcept C21200559 @default.
- W2951697025 hasConcept C24326235 @default.
- W2951697025 hasConcept C2777922577 @default.
- W2951697025 hasConcept C2779578285 @default.
- W2951697025 hasConcept C2989464291 @default.
- W2951697025 hasConcept C33923547 @default.
- W2951697025 hasConcept C36759035 @default.
- W2951697025 hasConcept C41008148 @default.
- W2951697025 hasConcept C42360764 @default.
- W2951697025 hasConcept C521977710 @default.