Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951738332> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2951738332 abstract "In talent recruitment, the job interview aims at selecting the right candidates for the right jobs through assessing their skills and experiences in relation to the job positions. While tremendous efforts have been made in improving job interviews, a long-standing challenge is how to design appropriate interview questions for comprehensively assessing the competencies that may be deemed relevant and representative for person-job fit. To this end, in this research, we focus on the development of a personalized question recommender system, namely DuerQuiz, for enhancing the job interview assessment. DuerQuiz is a fully deployed system, in which a knowledge graph of job skills, Skill-Graph, has been built for comprehensively modeling the relevant competencies that should be assessed in the job interview. Specifically, we first develop a novel skill entity extraction approach based on a bidirectional Long Short-Term Memory (LSTM) with a Conditional Random Field (CRF) layer (LSTM-CRF) neural network enhanced with adapted gate mechanism. In particular, to improve the reliability of extracted skill entities, we design a label propagation method based on more than 10 billion click-through data from the large-scale Baidu query logs. Furthermore, we discover the hypernym-hyponym relations between skill entities and construct the Skill-Graph by leveraging the classifier trained with extensive contextual features. Finally, we design a personalized question recommendation algorithm based on the Skill-Graph for improving the efficiency and effectiveness of job interview assessment. Extensive experiments on real-world recruitment data clearly validate the effectiveness of DuerQuiz, which had been deployed for generating written exercises in the 2018 Baidu campus recruitment event and received remarkable performances in terms of efficiency and effectiveness for selecting outstanding talents compared with a traditional non-personalized human-only assessment approach." @default.
- W2951738332 created "2019-06-27" @default.
- W2951738332 creator A5025292786 @default.
- W2951738332 creator A5028225506 @default.
- W2951738332 creator A5041749192 @default.
- W2951738332 creator A5041921496 @default.
- W2951738332 creator A5049015446 @default.
- W2951738332 creator A5067731925 @default.
- W2951738332 creator A5069509559 @default.
- W2951738332 creator A5082943001 @default.
- W2951738332 date "2019-07-25" @default.
- W2951738332 modified "2023-10-15" @default.
- W2951738332 title "DuerQuiz" @default.
- W2951738332 cites W1833550036 @default.
- W2951738332 cites W2010488117 @default.
- W2951738332 cites W2022166150 @default.
- W2951738332 cites W2038375842 @default.
- W2951738332 cites W2068737686 @default.
- W2951738332 cites W2086362180 @default.
- W2951738332 cites W2096765155 @default.
- W2951738332 cites W2123512824 @default.
- W2951738332 cites W2134033474 @default.
- W2951738332 cites W2138605095 @default.
- W2951738332 cites W2156099181 @default.
- W2951738332 cites W2157587020 @default.
- W2951738332 cites W2163375626 @default.
- W2951738332 cites W2168565044 @default.
- W2951738332 cites W2169025255 @default.
- W2951738332 cites W2251135946 @default.
- W2951738332 cites W2399120424 @default.
- W2951738332 cites W2756748969 @default.
- W2951738332 cites W2893564970 @default.
- W2951738332 cites W2962904552 @default.
- W2951738332 cites W2963625095 @default.
- W2951738332 cites W3098931577 @default.
- W2951738332 cites W3100612294 @default.
- W2951738332 cites W4298353908 @default.
- W2951738332 doi "https://doi.org/10.1145/3292500.3330706" @default.
- W2951738332 hasPublicationYear "2019" @default.
- W2951738332 type Work @default.
- W2951738332 sameAs 2951738332 @default.
- W2951738332 citedByCount "36" @default.
- W2951738332 countsByYear W29517383322020 @default.
- W2951738332 countsByYear W29517383322021 @default.
- W2951738332 countsByYear W29517383322022 @default.
- W2951738332 countsByYear W29517383322023 @default.
- W2951738332 crossrefType "proceedings-article" @default.
- W2951738332 hasAuthorship W2951738332A5025292786 @default.
- W2951738332 hasAuthorship W2951738332A5028225506 @default.
- W2951738332 hasAuthorship W2951738332A5041749192 @default.
- W2951738332 hasAuthorship W2951738332A5041921496 @default.
- W2951738332 hasAuthorship W2951738332A5049015446 @default.
- W2951738332 hasAuthorship W2951738332A5067731925 @default.
- W2951738332 hasAuthorship W2951738332A5069509559 @default.
- W2951738332 hasAuthorship W2951738332A5082943001 @default.
- W2951738332 hasConcept C119857082 @default.
- W2951738332 hasConcept C152565575 @default.
- W2951738332 hasConcept C154945302 @default.
- W2951738332 hasConcept C23123220 @default.
- W2951738332 hasConcept C2522767166 @default.
- W2951738332 hasConcept C41008148 @default.
- W2951738332 hasConcept C557471498 @default.
- W2951738332 hasConceptScore W2951738332C119857082 @default.
- W2951738332 hasConceptScore W2951738332C152565575 @default.
- W2951738332 hasConceptScore W2951738332C154945302 @default.
- W2951738332 hasConceptScore W2951738332C23123220 @default.
- W2951738332 hasConceptScore W2951738332C2522767166 @default.
- W2951738332 hasConceptScore W2951738332C41008148 @default.
- W2951738332 hasConceptScore W2951738332C557471498 @default.
- W2951738332 hasFunder F4320321001 @default.
- W2951738332 hasLocation W29517383321 @default.
- W2951738332 hasOpenAccess W2951738332 @default.
- W2951738332 hasPrimaryLocation W29517383321 @default.
- W2951738332 hasRelatedWork W2093471820 @default.
- W2951738332 hasRelatedWork W2114846443 @default.
- W2951738332 hasRelatedWork W2150182025 @default.
- W2951738332 hasRelatedWork W2347460059 @default.
- W2951738332 hasRelatedWork W2356597680 @default.
- W2951738332 hasRelatedWork W3092950680 @default.
- W2951738332 hasRelatedWork W3102147106 @default.
- W2951738332 hasRelatedWork W3136048405 @default.
- W2951738332 hasRelatedWork W4386781444 @default.
- W2951738332 hasRelatedWork W50079190 @default.
- W2951738332 isParatext "false" @default.
- W2951738332 isRetracted "false" @default.
- W2951738332 magId "2951738332" @default.
- W2951738332 workType "article" @default.