Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951741104> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2951741104 abstract "By a curve in R^d we mean a continuous map gamma:I -> R^d, where I is a closed interval. We call a curve gamma in R^d at most k crossing if it intersects every hyperplane at most k times (counted with multiplicity). The at most d crossing curves in R^d are often called convex curves and they form an important class; a primary example is the moment curve {(t,t^2,...,t^d):tin[0,1]}. They are also closely related to Chebyshev systems, which is a notion of considerable importance, e.g., in approximation theory. We prove that for every d there is M=M(d) such that every at most d+1 crossing curve in R^d can be subdivided into at most M convex curves. As a consequence, based on the work of Elias, Roldan, Safernova, and the second author, we obtain an essentially tight lower bound for a geometric Ramsey-type problem in R^d concerning order-type homogeneous sequences of points, investigated in several previous papers." @default.
- W2951741104 created "2019-06-27" @default.
- W2951741104 creator A5032577525 @default.
- W2951741104 creator A5070164050 @default.
- W2951741104 creator A5088282000 @default.
- W2951741104 date "2013-09-04" @default.
- W2951741104 modified "2023-10-06" @default.
- W2951741104 title "Curves in R^d intersecting every hyperplane at most d+1 times" @default.
- W2951741104 cites W1487872891 @default.
- W2951741104 cites W1977683477 @default.
- W2951741104 cites W2002819581 @default.
- W2951741104 cites W2038378199 @default.
- W2951741104 cites W2048615186 @default.
- W2951741104 cites W2083179104 @default.
- W2951741104 cites W2913904368 @default.
- W2951741104 cites W3098166863 @default.
- W2951741104 hasPublicationYear "2013" @default.
- W2951741104 type Work @default.
- W2951741104 sameAs 2951741104 @default.
- W2951741104 citedByCount "2" @default.
- W2951741104 countsByYear W29517411042013 @default.
- W2951741104 countsByYear W29517411042019 @default.
- W2951741104 crossrefType "posted-content" @default.
- W2951741104 hasAuthorship W2951741104A5032577525 @default.
- W2951741104 hasAuthorship W2951741104A5070164050 @default.
- W2951741104 hasAuthorship W2951741104A5088282000 @default.
- W2951741104 hasConcept C10138342 @default.
- W2951741104 hasConcept C112680207 @default.
- W2951741104 hasConcept C114614502 @default.
- W2951741104 hasConcept C134306372 @default.
- W2951741104 hasConcept C156004811 @default.
- W2951741104 hasConcept C162324750 @default.
- W2951741104 hasConcept C182306322 @default.
- W2951741104 hasConcept C18903297 @default.
- W2951741104 hasConcept C2524010 @default.
- W2951741104 hasConcept C2777299769 @default.
- W2951741104 hasConcept C33923547 @default.
- W2951741104 hasConcept C68693459 @default.
- W2951741104 hasConcept C86803240 @default.
- W2951741104 hasConceptScore W2951741104C10138342 @default.
- W2951741104 hasConceptScore W2951741104C112680207 @default.
- W2951741104 hasConceptScore W2951741104C114614502 @default.
- W2951741104 hasConceptScore W2951741104C134306372 @default.
- W2951741104 hasConceptScore W2951741104C156004811 @default.
- W2951741104 hasConceptScore W2951741104C162324750 @default.
- W2951741104 hasConceptScore W2951741104C182306322 @default.
- W2951741104 hasConceptScore W2951741104C18903297 @default.
- W2951741104 hasConceptScore W2951741104C2524010 @default.
- W2951741104 hasConceptScore W2951741104C2777299769 @default.
- W2951741104 hasConceptScore W2951741104C33923547 @default.
- W2951741104 hasConceptScore W2951741104C68693459 @default.
- W2951741104 hasConceptScore W2951741104C86803240 @default.
- W2951741104 hasLocation W29517411041 @default.
- W2951741104 hasOpenAccess W2951741104 @default.
- W2951741104 hasPrimaryLocation W29517411041 @default.
- W2951741104 hasRelatedWork W1928602502 @default.
- W2951741104 hasRelatedWork W2035113520 @default.
- W2951741104 hasRelatedWork W2039807959 @default.
- W2951741104 hasRelatedWork W2049613924 @default.
- W2951741104 hasRelatedWork W2061218163 @default.
- W2951741104 hasRelatedWork W2061520509 @default.
- W2951741104 hasRelatedWork W2105912565 @default.
- W2951741104 hasRelatedWork W2254861051 @default.
- W2951741104 hasRelatedWork W2286243830 @default.
- W2951741104 hasRelatedWork W2760042202 @default.
- W2951741104 hasRelatedWork W2949537367 @default.
- W2951741104 hasRelatedWork W2951494729 @default.
- W2951741104 hasRelatedWork W2952099475 @default.
- W2951741104 hasRelatedWork W2952154092 @default.
- W2951741104 hasRelatedWork W2962989819 @default.
- W2951741104 hasRelatedWork W2963984616 @default.
- W2951741104 hasRelatedWork W3014659399 @default.
- W2951741104 hasRelatedWork W3015260759 @default.
- W2951741104 hasRelatedWork W2329845688 @default.
- W2951741104 hasRelatedWork W2747129747 @default.
- W2951741104 isParatext "false" @default.
- W2951741104 isRetracted "false" @default.
- W2951741104 magId "2951741104" @default.
- W2951741104 workType "article" @default.