Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951755897> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2951755897 abstract "The regularized random forest (RRF) was recently proposed for feature selection by building only one ensemble. In RRF the features are evaluated on a part of the training data at each tree node. We derive an upper bound for the number of distinct Gini information gain values in a node, and show that many features can share the same information gain at a node with a small number of instances and a large number of features. Therefore, in a node with a small number of instances, RRF is likely to select a feature not strongly relevant. Here an enhanced RRF, referred to as the guided RRF (GRRF), is proposed. In GRRF, the importance scores from an ordinary random forest (RF) are used to guide the feature selection process in RRF. Experiments on 10 gene data sets show that the accuracy performance of GRRF is, in general, more robust than RRF when their parameters change. GRRF is computationally efficient, can select compact feature subsets, and has competitive accuracy performance, compared to RRF, varSelRF and LASSO logistic regression (with evaluations from an RF classifier). Also, RF applied to the features selected by RRF with the minimal regularization outperforms RF applied to all the features for most of the data sets considered here. Therefore, if accuracy is considered more important than the size of the feature subset, RRF with the minimal regularization may be considered. We use the accuracy performance of RF, a strong classifier, to evaluate feature selection methods, and illustrate that weak classifiers are less capable of capturing the information contained in a feature subset. Both RRF and GRRF were implemented in the RRF R package available at CRAN, the official R package archive." @default.
- W2951755897 created "2019-06-27" @default.
- W2951755897 creator A5002544391 @default.
- W2951755897 creator A5007259870 @default.
- W2951755897 date "2012-09-28" @default.
- W2951755897 modified "2023-09-23" @default.
- W2951755897 title "Gene selection with guided regularized random forest" @default.
- W2951755897 cites W1520812622 @default.
- W2951755897 cites W1560107318 @default.
- W2951755897 cites W1678356000 @default.
- W2951755897 cites W1989076816 @default.
- W2951755897 cites W2019683663 @default.
- W2951755897 cites W2048231652 @default.
- W2951755897 cites W2087684630 @default.
- W2951755897 cites W2088851040 @default.
- W2951755897 cites W2092868756 @default.
- W2951755897 cites W2109363337 @default.
- W2951755897 cites W2119479037 @default.
- W2951755897 cites W2128985829 @default.
- W2951755897 cites W2135046866 @default.
- W2951755897 cites W2143347324 @default.
- W2951755897 cites W2143426320 @default.
- W2951755897 cites W2148633389 @default.
- W2951755897 cites W2156571267 @default.
- W2951755897 cites W2159400887 @default.
- W2951755897 cites W2911964244 @default.
- W2951755897 cites W2949979142 @default.
- W2951755897 cites W3099514962 @default.
- W2951755897 doi "https://doi.org/10.48550/arxiv.1209.6425" @default.
- W2951755897 hasPublicationYear "2012" @default.
- W2951755897 type Work @default.
- W2951755897 sameAs 2951755897 @default.
- W2951755897 citedByCount "0" @default.
- W2951755897 crossrefType "posted-content" @default.
- W2951755897 hasAuthorship W2951755897A5002544391 @default.
- W2951755897 hasAuthorship W2951755897A5007259870 @default.
- W2951755897 hasBestOaLocation W29517558971 @default.
- W2951755897 hasConcept C105795698 @default.
- W2951755897 hasConcept C119857082 @default.
- W2951755897 hasConcept C124101348 @default.
- W2951755897 hasConcept C148483581 @default.
- W2951755897 hasConcept C153180895 @default.
- W2951755897 hasConcept C154945302 @default.
- W2951755897 hasConcept C169258074 @default.
- W2951755897 hasConcept C2776135515 @default.
- W2951755897 hasConcept C33923547 @default.
- W2951755897 hasConcept C41008148 @default.
- W2951755897 hasConcept C83546350 @default.
- W2951755897 hasConcept C95623464 @default.
- W2951755897 hasConceptScore W2951755897C105795698 @default.
- W2951755897 hasConceptScore W2951755897C119857082 @default.
- W2951755897 hasConceptScore W2951755897C124101348 @default.
- W2951755897 hasConceptScore W2951755897C148483581 @default.
- W2951755897 hasConceptScore W2951755897C153180895 @default.
- W2951755897 hasConceptScore W2951755897C154945302 @default.
- W2951755897 hasConceptScore W2951755897C169258074 @default.
- W2951755897 hasConceptScore W2951755897C2776135515 @default.
- W2951755897 hasConceptScore W2951755897C33923547 @default.
- W2951755897 hasConceptScore W2951755897C41008148 @default.
- W2951755897 hasConceptScore W2951755897C83546350 @default.
- W2951755897 hasConceptScore W2951755897C95623464 @default.
- W2951755897 hasLocation W29517558971 @default.
- W2951755897 hasOpenAccess W2951755897 @default.
- W2951755897 hasPrimaryLocation W29517558971 @default.
- W2951755897 hasRelatedWork W2055939299 @default.
- W2951755897 hasRelatedWork W2275058042 @default.
- W2951755897 hasRelatedWork W2508925980 @default.
- W2951755897 hasRelatedWork W2973799232 @default.
- W2951755897 hasRelatedWork W3174196512 @default.
- W2951755897 hasRelatedWork W3200179079 @default.
- W2951755897 hasRelatedWork W4212852473 @default.
- W2951755897 hasRelatedWork W4213311745 @default.
- W2951755897 hasRelatedWork W4225360065 @default.
- W2951755897 hasRelatedWork W4249229055 @default.
- W2951755897 isParatext "false" @default.
- W2951755897 isRetracted "false" @default.
- W2951755897 magId "2951755897" @default.
- W2951755897 workType "article" @default.