Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951777246> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2951777246 abstract "Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the title, or journal name, from bibliographic reference strings. Many approaches to this problem have been proposed so far, including regular expressions, knowledge bases and supervised machine learning. Many open source reference parsers based on various algorithms are also available. In this paper, we apply, evaluate and compare ten reference parsing tools in a specific business use case. The tools are Anystyle-Parser, Biblio, CERMINE, Citation, Citation-Parser, GROBID, ParsCit, PDFSSA4MET, Reference Tagger and Science Parse, and we compare them in both their out-of-the-box versions and versions tuned to the project-specific data. According to our evaluation, the best performing out-of-the-box tool is GROBID (F1 0.89), followed by CERMINE (F1 0.83) and ParsCit (F1 0.75). We also found that even though machine learning-based tools and tools based on rules or regular expressions achieve on average similar precision (0.77 for ML-based tools vs. 0.76 for non-ML-based tools), applying machine learning-based tools results in a recall three times higher than in the case of non-ML-based tools (0.66 vs. 0.22). Our study also confirms that tuning the models to the task-specific data results in the increase in the quality. The retrained versions of reference parsers are in all cases better than their out-of-the-box counterparts; for GROBID F1 increased by 3% (0.92 vs. 0.89), for CERMINE by 11% (0.92 vs. 0.83), and for ParsCit by 16% (0.87 vs. 0.75)." @default.
- W2951777246 created "2019-06-27" @default.
- W2951777246 creator A5027275839 @default.
- W2951777246 creator A5058310756 @default.
- W2951777246 creator A5061634863 @default.
- W2951777246 creator A5081348430 @default.
- W2951777246 date "2018-02-04" @default.
- W2951777246 modified "2023-09-27" @default.
- W2951777246 title "Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers" @default.
- W2951777246 hasPublicationYear "2018" @default.
- W2951777246 type Work @default.
- W2951777246 sameAs 2951777246 @default.
- W2951777246 citedByCount "1" @default.
- W2951777246 countsByYear W29517772462019 @default.
- W2951777246 crossrefType "posted-content" @default.
- W2951777246 hasAuthorship W2951777246A5027275839 @default.
- W2951777246 hasAuthorship W2951777246A5058310756 @default.
- W2951777246 hasAuthorship W2951777246A5061634863 @default.
- W2951777246 hasAuthorship W2951777246A5081348430 @default.
- W2951777246 hasConcept C119857082 @default.
- W2951777246 hasConcept C136764020 @default.
- W2951777246 hasConcept C154945302 @default.
- W2951777246 hasConcept C162324750 @default.
- W2951777246 hasConcept C186644900 @default.
- W2951777246 hasConcept C187736073 @default.
- W2951777246 hasConcept C199360897 @default.
- W2951777246 hasConcept C204321447 @default.
- W2951777246 hasConcept C23123220 @default.
- W2951777246 hasConcept C2777904410 @default.
- W2951777246 hasConcept C2778805511 @default.
- W2951777246 hasConcept C2780451532 @default.
- W2951777246 hasConcept C3018397939 @default.
- W2951777246 hasConcept C41008148 @default.
- W2951777246 hasConcept C81669768 @default.
- W2951777246 hasConcept C93518851 @default.
- W2951777246 hasConceptScore W2951777246C119857082 @default.
- W2951777246 hasConceptScore W2951777246C136764020 @default.
- W2951777246 hasConceptScore W2951777246C154945302 @default.
- W2951777246 hasConceptScore W2951777246C162324750 @default.
- W2951777246 hasConceptScore W2951777246C186644900 @default.
- W2951777246 hasConceptScore W2951777246C187736073 @default.
- W2951777246 hasConceptScore W2951777246C199360897 @default.
- W2951777246 hasConceptScore W2951777246C204321447 @default.
- W2951777246 hasConceptScore W2951777246C23123220 @default.
- W2951777246 hasConceptScore W2951777246C2777904410 @default.
- W2951777246 hasConceptScore W2951777246C2778805511 @default.
- W2951777246 hasConceptScore W2951777246C2780451532 @default.
- W2951777246 hasConceptScore W2951777246C3018397939 @default.
- W2951777246 hasConceptScore W2951777246C41008148 @default.
- W2951777246 hasConceptScore W2951777246C81669768 @default.
- W2951777246 hasConceptScore W2951777246C93518851 @default.
- W2951777246 hasLocation W29517772461 @default.
- W2951777246 hasOpenAccess W2951777246 @default.
- W2951777246 hasPrimaryLocation W29517772461 @default.
- W2951777246 hasRelatedWork W1580179032 @default.
- W2951777246 hasRelatedWork W1591279088 @default.
- W2951777246 hasRelatedWork W2105103433 @default.
- W2951777246 hasRelatedWork W2111437636 @default.
- W2951777246 hasRelatedWork W2137348499 @default.
- W2951777246 hasRelatedWork W2251044098 @default.
- W2951777246 hasRelatedWork W2400988636 @default.
- W2951777246 hasRelatedWork W2742157521 @default.
- W2951777246 hasRelatedWork W2757814986 @default.
- W2951777246 hasRelatedWork W2785312924 @default.
- W2951777246 hasRelatedWork W2798010889 @default.
- W2951777246 hasRelatedWork W2923798796 @default.
- W2951777246 hasRelatedWork W2972466365 @default.
- W2951777246 hasRelatedWork W3018109885 @default.
- W2951777246 hasRelatedWork W3020931369 @default.
- W2951777246 hasRelatedWork W3080427942 @default.
- W2951777246 hasRelatedWork W3082097605 @default.
- W2951777246 hasRelatedWork W3102095584 @default.
- W2951777246 hasRelatedWork W3214461523 @default.
- W2951777246 hasRelatedWork W888389533 @default.
- W2951777246 isParatext "false" @default.
- W2951777246 isRetracted "false" @default.
- W2951777246 magId "2951777246" @default.
- W2951777246 workType "article" @default.