Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951805425> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2951805425 abstract "Patch priors have become an important component of image restoration. A powerful approach in this category of restoration algorithms is the popular Expected Patch Log-Likelihood (EPLL) algorithm. EPLL uses a Gaussian mixture model (GMM) prior learned on clean image patches as a way to regularize degraded patches. In this paper, we show that a generalized Gaussian mixture model (GGMM) captures the underlying distribution of patches better than a GMM. Even though GGMM is a powerful prior to combine with EPLL, the non-Gaussianity of its components presents major challenges to be applied to a computationally intensive process of image restoration. Specifically, each patch has to undergo a patch classification step and a shrinkage step. These two steps can be efficiently solved with a GMM prior but are computationally impractical when using a GGMM prior. In this paper, we provide approximations and computational recipes for fast evaluation of these two steps, so that EPLL can embed a GGMM prior on an image with more than tens of thousands of patches. Our main contribution is to analyze the accuracy of our approximations based on thorough theoretical analysis. Our evaluations indicate that the GGMM prior is consistently a better fit formodeling image patch distribution and performs better on average in image denoising task." @default.
- W2951805425 created "2019-06-27" @default.
- W2951805425 creator A5002282875 @default.
- W2951805425 creator A5015512461 @default.
- W2951805425 creator A5018487853 @default.
- W2951805425 date "2018-02-03" @default.
- W2951805425 modified "2023-10-17" @default.
- W2951805425 title "Image denoising with generalized Gaussian mixture model patch priors" @default.
- W2951805425 hasPublicationYear "2018" @default.
- W2951805425 type Work @default.
- W2951805425 sameAs 2951805425 @default.
- W2951805425 citedByCount "0" @default.
- W2951805425 crossrefType "posted-content" @default.
- W2951805425 hasAuthorship W2951805425A5002282875 @default.
- W2951805425 hasAuthorship W2951805425A5015512461 @default.
- W2951805425 hasAuthorship W2951805425A5018487853 @default.
- W2951805425 hasBestOaLocation W29518054251 @default.
- W2951805425 hasConcept C107673813 @default.
- W2951805425 hasConcept C115961682 @default.
- W2951805425 hasConcept C121332964 @default.
- W2951805425 hasConcept C153180895 @default.
- W2951805425 hasConcept C154945302 @default.
- W2951805425 hasConcept C163294075 @default.
- W2951805425 hasConcept C163716315 @default.
- W2951805425 hasConcept C177769412 @default.
- W2951805425 hasConcept C28826006 @default.
- W2951805425 hasConcept C2983327147 @default.
- W2951805425 hasConcept C33923547 @default.
- W2951805425 hasConcept C41008148 @default.
- W2951805425 hasConcept C4199805 @default.
- W2951805425 hasConcept C61224824 @default.
- W2951805425 hasConcept C62520636 @default.
- W2951805425 hasConceptScore W2951805425C107673813 @default.
- W2951805425 hasConceptScore W2951805425C115961682 @default.
- W2951805425 hasConceptScore W2951805425C121332964 @default.
- W2951805425 hasConceptScore W2951805425C153180895 @default.
- W2951805425 hasConceptScore W2951805425C154945302 @default.
- W2951805425 hasConceptScore W2951805425C163294075 @default.
- W2951805425 hasConceptScore W2951805425C163716315 @default.
- W2951805425 hasConceptScore W2951805425C177769412 @default.
- W2951805425 hasConceptScore W2951805425C28826006 @default.
- W2951805425 hasConceptScore W2951805425C2983327147 @default.
- W2951805425 hasConceptScore W2951805425C33923547 @default.
- W2951805425 hasConceptScore W2951805425C41008148 @default.
- W2951805425 hasConceptScore W2951805425C4199805 @default.
- W2951805425 hasConceptScore W2951805425C61224824 @default.
- W2951805425 hasConceptScore W2951805425C62520636 @default.
- W2951805425 hasLocation W29518054251 @default.
- W2951805425 hasLocation W29518054252 @default.
- W2951805425 hasLocation W29518054253 @default.
- W2951805425 hasLocation W29518054254 @default.
- W2951805425 hasLocation W29518054255 @default.
- W2951805425 hasLocation W29518054256 @default.
- W2951805425 hasLocation W29518054257 @default.
- W2951805425 hasLocation W29518054258 @default.
- W2951805425 hasOpenAccess W2951805425 @default.
- W2951805425 hasPrimaryLocation W29518054251 @default.
- W2951805425 hasRelatedWork W1648249948 @default.
- W2951805425 hasRelatedWork W2316645511 @default.
- W2951805425 hasRelatedWork W2359631785 @default.
- W2951805425 hasRelatedWork W2364044301 @default.
- W2951805425 hasRelatedWork W2368924614 @default.
- W2951805425 hasRelatedWork W2591234721 @default.
- W2951805425 hasRelatedWork W2807398400 @default.
- W2951805425 hasRelatedWork W3194792450 @default.
- W2951805425 hasRelatedWork W4297937700 @default.
- W2951805425 hasRelatedWork W4302386296 @default.
- W2951805425 isParatext "false" @default.
- W2951805425 isRetracted "false" @default.
- W2951805425 magId "2951805425" @default.
- W2951805425 workType "article" @default.