Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951806174> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2951806174 abstract "A commutative but not cocommutative graded Hopf algebra $Hn$, based on ordered rooted trees, is studied. This Hopf algebra generalizes the Hopf algebraic structure of unordered rooted trees $Hc$, developed by Butcher in his study of Runge--Kutta methods and later rediscovered by Connes and Moscovici in the context of non-commutative geometry and by Kreimer where it is used to describe renormalization in quantum field theory. It is shown that $Hn$ is naturally obtained from a universal object in a category of non-commutative derivations, and in particular, it forms a foundation for the study of numerical integrators based on non-commutative Lie group actions on a manifold. Recursive and non-recursive definitions of the coproduct and the antipode are derived. It is also shown that the dual of $Hn$ is a Hopf algebra of Grossman and Larson. $Hn$ contains two well-known Hopf algebras as special cases: The Hopf algebra $Hc$ of Butcher--Connes--Kreimer is identified as a proper subalgebra of $Hn$ using the image of a tree symmetrization operator. The Hopf algebra $Hf$ of the Free Associative Algebra is obtained from $Hn$ by a quotient construction." @default.
- W2951806174 created "2019-06-27" @default.
- W2951806174 creator A5069525654 @default.
- W2951806174 creator A5072691940 @default.
- W2951806174 date "2006-03-01" @default.
- W2951806174 modified "2023-10-18" @default.
- W2951806174 title "On the Hopf Algebraic Structure of Lie Group Integrators" @default.
- W2951806174 cites W1493137254 @default.
- W2951806174 cites W1555233889 @default.
- W2951806174 cites W1560244967 @default.
- W2951806174 cites W1970398487 @default.
- W2951806174 cites W1978490496 @default.
- W2951806174 cites W1981733036 @default.
- W2951806174 cites W1985467287 @default.
- W2951806174 cites W2013045493 @default.
- W2951806174 cites W2014884483 @default.
- W2951806174 cites W2016012557 @default.
- W2951806174 cites W2031958704 @default.
- W2951806174 cites W2061356302 @default.
- W2951806174 cites W2067765618 @default.
- W2951806174 cites W2094138558 @default.
- W2951806174 cites W2151249889 @default.
- W2951806174 cites W2164743984 @default.
- W2951806174 cites W2995799746 @default.
- W2951806174 hasPublicationYear "2006" @default.
- W2951806174 type Work @default.
- W2951806174 sameAs 2951806174 @default.
- W2951806174 citedByCount "1" @default.
- W2951806174 crossrefType "posted-content" @default.
- W2951806174 hasAuthorship W2951806174A5069525654 @default.
- W2951806174 hasAuthorship W2951806174A5072691940 @default.
- W2951806174 hasConcept C130856480 @default.
- W2951806174 hasConcept C136119220 @default.
- W2951806174 hasConcept C138354692 @default.
- W2951806174 hasConcept C148647251 @default.
- W2951806174 hasConcept C155058155 @default.
- W2951806174 hasConcept C182419690 @default.
- W2951806174 hasConcept C183778304 @default.
- W2951806174 hasConcept C202444582 @default.
- W2951806174 hasConcept C2778676360 @default.
- W2951806174 hasConcept C29712632 @default.
- W2951806174 hasConcept C33923547 @default.
- W2951806174 hasConcept C55192134 @default.
- W2951806174 hasConcept C67996461 @default.
- W2951806174 hasConceptScore W2951806174C130856480 @default.
- W2951806174 hasConceptScore W2951806174C136119220 @default.
- W2951806174 hasConceptScore W2951806174C138354692 @default.
- W2951806174 hasConceptScore W2951806174C148647251 @default.
- W2951806174 hasConceptScore W2951806174C155058155 @default.
- W2951806174 hasConceptScore W2951806174C182419690 @default.
- W2951806174 hasConceptScore W2951806174C183778304 @default.
- W2951806174 hasConceptScore W2951806174C202444582 @default.
- W2951806174 hasConceptScore W2951806174C2778676360 @default.
- W2951806174 hasConceptScore W2951806174C29712632 @default.
- W2951806174 hasConceptScore W2951806174C33923547 @default.
- W2951806174 hasConceptScore W2951806174C55192134 @default.
- W2951806174 hasConceptScore W2951806174C67996461 @default.
- W2951806174 hasLocation W29518061741 @default.
- W2951806174 hasOpenAccess W2951806174 @default.
- W2951806174 hasPrimaryLocation W29518061741 @default.
- W2951806174 hasRelatedWork W1571192943 @default.
- W2951806174 hasRelatedWork W1704958104 @default.
- W2951806174 hasRelatedWork W1964720703 @default.
- W2951806174 hasRelatedWork W1990056107 @default.
- W2951806174 hasRelatedWork W2024430982 @default.
- W2951806174 hasRelatedWork W2039856880 @default.
- W2951806174 hasRelatedWork W2065409249 @default.
- W2951806174 hasRelatedWork W2072057949 @default.
- W2951806174 hasRelatedWork W2088903423 @default.
- W2951806174 hasRelatedWork W2092847547 @default.
- W2951806174 hasRelatedWork W2133945002 @default.
- W2951806174 hasRelatedWork W2141033903 @default.
- W2951806174 hasRelatedWork W2147499885 @default.
- W2951806174 hasRelatedWork W2951566661 @default.
- W2951806174 hasRelatedWork W2952752871 @default.
- W2951806174 hasRelatedWork W2953036547 @default.
- W2951806174 hasRelatedWork W2964419228 @default.
- W2951806174 hasRelatedWork W3098006281 @default.
- W2951806174 hasRelatedWork W3099071849 @default.
- W2951806174 hasRelatedWork W8727237 @default.
- W2951806174 isParatext "false" @default.
- W2951806174 isRetracted "false" @default.
- W2951806174 magId "2951806174" @default.
- W2951806174 workType "article" @default.