Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951837999> ?p ?o ?g. }
- W2951837999 endingPage "3102" @default.
- W2951837999 startingPage "3093" @default.
- W2951837999 abstract "The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumption. However, its performance may degrade dramatically when the noises are heavy tailed. To cope with this problem, this paper proposes two new nonlinear filters, namely the linear regression maximum correntropy EKF (LRMCEKF) and nonlinear regression maximum correntropy EKF (NRMCEKF), by applying the maximum correntropy criterion (MCC) rather than the MMSE criterion to EKF. In both filters, a regression model is formulated, and a fixed-point iterative algorithm is utilized to obtain the posterior estimates. The effectiveness and robustness of the proposed algorithms in target tracking are confirmed by an illustrative example." @default.
- W2951837999 created "2019-06-27" @default.
- W2951837999 creator A5030549375 @default.
- W2951837999 creator A5044243518 @default.
- W2951837999 creator A5052159086 @default.
- W2951837999 creator A5068707928 @default.
- W2951837999 creator A5072525147 @default.
- W2951837999 creator A5077852542 @default.
- W2951837999 date "2021-05-01" @default.
- W2951837999 modified "2023-10-14" @default.
- W2951837999 title "Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering" @default.
- W2951837999 cites W1978391899 @default.
- W2951837999 cites W1980907873 @default.
- W2951837999 cites W1985819320 @default.
- W2951837999 cites W2007249861 @default.
- W2951837999 cites W2018001863 @default.
- W2951837999 cites W2041962665 @default.
- W2951837999 cites W2044351729 @default.
- W2951837999 cites W2054091988 @default.
- W2951837999 cites W2082452901 @default.
- W2951837999 cites W2083965599 @default.
- W2951837999 cites W2098473875 @default.
- W2951837999 cites W2105934661 @default.
- W2951837999 cites W2106669646 @default.
- W2951837999 cites W2113713615 @default.
- W2951837999 cites W2120315477 @default.
- W2951837999 cites W2121990344 @default.
- W2951837999 cites W2135160607 @default.
- W2951837999 cites W2136409657 @default.
- W2951837999 cites W2137823674 @default.
- W2951837999 cites W2139586001 @default.
- W2951837999 cites W2141767566 @default.
- W2951837999 cites W2154131365 @default.
- W2951837999 cites W2166121369 @default.
- W2951837999 cites W2343454598 @default.
- W2951837999 cites W2395240779 @default.
- W2951837999 cites W2510333599 @default.
- W2951837999 cites W2513248895 @default.
- W2951837999 cites W2523327093 @default.
- W2951837999 cites W2528325063 @default.
- W2951837999 cites W2553413742 @default.
- W2951837999 cites W2572262903 @default.
- W2951837999 cites W2698658463 @default.
- W2951837999 cites W2770746583 @default.
- W2951837999 cites W2792163169 @default.
- W2951837999 cites W2794413559 @default.
- W2951837999 cites W2803565927 @default.
- W2951837999 cites W2885077557 @default.
- W2951837999 cites W2914726464 @default.
- W2951837999 cites W2963106684 @default.
- W2951837999 cites W2963134661 @default.
- W2951837999 cites W4230367971 @default.
- W2951837999 cites W4230624888 @default.
- W2951837999 cites W4300352410 @default.
- W2951837999 cites W850051531 @default.
- W2951837999 doi "https://doi.org/10.1109/tsmc.2019.2917712" @default.
- W2951837999 hasPublicationYear "2021" @default.
- W2951837999 type Work @default.
- W2951837999 sameAs 2951837999 @default.
- W2951837999 citedByCount "46" @default.
- W2951837999 countsByYear W29518379992012 @default.
- W2951837999 countsByYear W29518379992020 @default.
- W2951837999 countsByYear W29518379992021 @default.
- W2951837999 countsByYear W29518379992022 @default.
- W2951837999 countsByYear W29518379992023 @default.
- W2951837999 crossrefType "journal-article" @default.
- W2951837999 hasAuthorship W2951837999A5030549375 @default.
- W2951837999 hasAuthorship W2951837999A5044243518 @default.
- W2951837999 hasAuthorship W2951837999A5052159086 @default.
- W2951837999 hasAuthorship W2951837999A5068707928 @default.
- W2951837999 hasAuthorship W2951837999A5072525147 @default.
- W2951837999 hasAuthorship W2951837999A5077852542 @default.
- W2951837999 hasConcept C104317684 @default.
- W2951837999 hasConcept C105795698 @default.
- W2951837999 hasConcept C11413529 @default.
- W2951837999 hasConcept C121332964 @default.
- W2951837999 hasConcept C126255220 @default.
- W2951837999 hasConcept C139945424 @default.
- W2951837999 hasConcept C152877465 @default.
- W2951837999 hasConcept C154945302 @default.
- W2951837999 hasConcept C157286648 @default.
- W2951837999 hasConcept C158622935 @default.
- W2951837999 hasConcept C163716315 @default.
- W2951837999 hasConcept C185429906 @default.
- W2951837999 hasConcept C185592680 @default.
- W2951837999 hasConcept C206833254 @default.
- W2951837999 hasConcept C2775924081 @default.
- W2951837999 hasConcept C33923547 @default.
- W2951837999 hasConcept C41008148 @default.
- W2951837999 hasConcept C46889948 @default.
- W2951837999 hasConcept C47446073 @default.
- W2951837999 hasConcept C48921125 @default.
- W2951837999 hasConcept C55493867 @default.
- W2951837999 hasConcept C62520636 @default.
- W2951837999 hasConcept C63479239 @default.
- W2951837999 hasConcept C83546350 @default.
- W2951837999 hasConcept C8639503 @default.
- W2951837999 hasConcept C90652560 @default.