Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951869881> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2951869881 abstract "A gain graph is a triple (G,h,H), where G is a connected graph with an arbitrary, but fixed, orientation of edges, H is a group, and h is a homomorphism from the free group on the edges of G to H. A gain graph is called balanced if the h-image of each closed walk on G is the identity. Consider a gain graph with abelian gain group having no odd torsion. If there is a basis of the graph's binary cycle space each of whose members can be lifted to a closed walk whose gain is the identity, then the gain graph is balanced, provided that the graph is finite or the group has no nontrivial infinitely 2-divisible elements. We apply this theorem to deduce a result on the projective geometry of piecewise-linear realizations of cell-decompositions of manifolds." @default.
- W2951869881 created "2019-06-27" @default.
- W2951869881 creator A5036737366 @default.
- W2951869881 creator A5076858989 @default.
- W2951869881 date "2002-10-03" @default.
- W2951869881 modified "2023-09-27" @default.
- W2951869881 title "Criteria for Balance in Abelian Gain Graphs, with Applications to Piecewise-Linear Geometry" @default.
- W2951869881 hasPublicationYear "2002" @default.
- W2951869881 type Work @default.
- W2951869881 sameAs 2951869881 @default.
- W2951869881 citedByCount "0" @default.
- W2951869881 crossrefType "posted-content" @default.
- W2951869881 hasAuthorship W2951869881A5036737366 @default.
- W2951869881 hasAuthorship W2951869881A5076858989 @default.
- W2951869881 hasConcept C114614502 @default.
- W2951869881 hasConcept C118615104 @default.
- W2951869881 hasConcept C132525143 @default.
- W2951869881 hasConcept C136170076 @default.
- W2951869881 hasConcept C33923547 @default.
- W2951869881 hasConceptScore W2951869881C114614502 @default.
- W2951869881 hasConceptScore W2951869881C118615104 @default.
- W2951869881 hasConceptScore W2951869881C132525143 @default.
- W2951869881 hasConceptScore W2951869881C136170076 @default.
- W2951869881 hasConceptScore W2951869881C33923547 @default.
- W2951869881 hasLocation W29518698811 @default.
- W2951869881 hasOpenAccess W2951869881 @default.
- W2951869881 hasPrimaryLocation W29518698811 @default.
- W2951869881 hasRelatedWork W1435912308 @default.
- W2951869881 hasRelatedWork W1660188380 @default.
- W2951869881 hasRelatedWork W1796173830 @default.
- W2951869881 hasRelatedWork W1834708616 @default.
- W2951869881 hasRelatedWork W2068810516 @default.
- W2951869881 hasRelatedWork W2134383379 @default.
- W2951869881 hasRelatedWork W2792623373 @default.
- W2951869881 hasRelatedWork W2953113058 @default.
- W2951869881 hasRelatedWork W2977916063 @default.
- W2951869881 hasRelatedWork W3048793406 @default.
- W2951869881 hasRelatedWork W3085364502 @default.
- W2951869881 hasRelatedWork W3098750770 @default.
- W2951869881 hasRelatedWork W3112533114 @default.
- W2951869881 hasRelatedWork W3131238070 @default.
- W2951869881 hasRelatedWork W3155251132 @default.
- W2951869881 hasRelatedWork W3161258118 @default.
- W2951869881 hasRelatedWork W3163567768 @default.
- W2951869881 hasRelatedWork W3194048899 @default.
- W2951869881 hasRelatedWork W3204002809 @default.
- W2951869881 isParatext "false" @default.
- W2951869881 isRetracted "false" @default.
- W2951869881 magId "2951869881" @default.
- W2951869881 workType "article" @default.