Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951891415> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2951891415 abstract "Dramatic raising of Deep Learning (DL) approach and its capability in biomedical applications lead us to explore the advantages of using DL for sleep Apnea-Hypopnea severity classification. To reduce the complexity of clinical diagnosis using Polysomnography (PSG), which is multiple sensing platform, we incorporates our proposed DL scheme into one single Airflow (AF) sensing signal (subset of PSG). Seventeen features have been extracted from AF and then fed into Deep Neural Networks to classify in two studies. First, we proposed a binary classifications which use the cutoff indices at AHI = 5, 15 and 30 events/hour. Second, the multiple Sleep Apnea-Hypopnea Syndrome (SAHS) severity classification was proposed to classify patients into 4 groups including no SAHS, mild SAHS, moderate SAHS, and severe SAHS. For methods evaluation, we used a higher number of patients than related works to accommodate more diversity which includes 520 AF records obtained from the MrOS sleep study (Visit 2) database. We then applied the 10-fold cross-validation technique to get the accuracy, sensitivity and specificity. Moreover, we compared the results from our main classifier with other two approaches which were used in previous researches including the Support Vector Machine (SVM) and the Adaboost-Classification and Regression Trees (AB-CART). From the binary classification, our proposed method provides significantly higher performance than other two approaches with the accuracy of 83.46 %, 85.39 % and 92.69 % in each cutoff, respectively. For the multiclass classification, it also returns a highest accuracy of all approaches with 63.70 %." @default.
- W2951891415 created "2019-06-27" @default.
- W2951891415 creator A5004012466 @default.
- W2951891415 creator A5009497783 @default.
- W2951891415 creator A5022621021 @default.
- W2951891415 creator A5050282933 @default.
- W2951891415 date "2018-10-01" @default.
- W2951891415 modified "2023-09-25" @default.
- W2951891415 title "Deep Neural Networks with Weighted Averaged Overnight Airflow Features for Sleep Apnea-Hypopnea Severity Classification" @default.
- W2951891415 cites W1479317506 @default.
- W2951891415 cites W1513495705 @default.
- W2951891415 cites W1545241942 @default.
- W2951891415 cites W1966507238 @default.
- W2951891415 cites W1985854967 @default.
- W2951891415 cites W1997139643 @default.
- W2951891415 cites W2028396484 @default.
- W2951891415 cites W2044404868 @default.
- W2951891415 cites W2061672958 @default.
- W2951891415 cites W2070050199 @default.
- W2951891415 cites W2077410237 @default.
- W2951891415 cites W2088245374 @default.
- W2951891415 cites W2110533744 @default.
- W2951891415 cites W2112458829 @default.
- W2951891415 cites W2129435243 @default.
- W2951891415 cites W2129525244 @default.
- W2951891415 cites W2144194006 @default.
- W2951891415 cites W2155758218 @default.
- W2951891415 cites W2344257056 @default.
- W2951891415 cites W2558942501 @default.
- W2951891415 cites W2592857683 @default.
- W2951891415 doi "https://doi.org/10.1109/tencon.2018.8650491" @default.
- W2951891415 hasPublicationYear "2018" @default.
- W2951891415 type Work @default.
- W2951891415 sameAs 2951891415 @default.
- W2951891415 citedByCount "18" @default.
- W2951891415 countsByYear W29518914152019 @default.
- W2951891415 countsByYear W29518914152020 @default.
- W2951891415 countsByYear W29518914152021 @default.
- W2951891415 countsByYear W29518914152022 @default.
- W2951891415 countsByYear W29518914152023 @default.
- W2951891415 crossrefType "proceedings-article" @default.
- W2951891415 hasAuthorship W2951891415A5004012466 @default.
- W2951891415 hasAuthorship W2951891415A5009497783 @default.
- W2951891415 hasAuthorship W2951891415A5022621021 @default.
- W2951891415 hasAuthorship W2951891415A5050282933 @default.
- W2951891415 hasBestOaLocation W29518914152 @default.
- W2951891415 hasConcept C119857082 @default.
- W2951891415 hasConcept C12267149 @default.
- W2951891415 hasConcept C126322002 @default.
- W2951891415 hasConcept C141404830 @default.
- W2951891415 hasConcept C153180895 @default.
- W2951891415 hasConcept C154945302 @default.
- W2951891415 hasConcept C2777711342 @default.
- W2951891415 hasConcept C2777935920 @default.
- W2951891415 hasConcept C2778205975 @default.
- W2951891415 hasConcept C2781326671 @default.
- W2951891415 hasConcept C41008148 @default.
- W2951891415 hasConcept C50644808 @default.
- W2951891415 hasConcept C58471807 @default.
- W2951891415 hasConcept C66905080 @default.
- W2951891415 hasConcept C71924100 @default.
- W2951891415 hasConcept C97931131 @default.
- W2951891415 hasConceptScore W2951891415C119857082 @default.
- W2951891415 hasConceptScore W2951891415C12267149 @default.
- W2951891415 hasConceptScore W2951891415C126322002 @default.
- W2951891415 hasConceptScore W2951891415C141404830 @default.
- W2951891415 hasConceptScore W2951891415C153180895 @default.
- W2951891415 hasConceptScore W2951891415C154945302 @default.
- W2951891415 hasConceptScore W2951891415C2777711342 @default.
- W2951891415 hasConceptScore W2951891415C2777935920 @default.
- W2951891415 hasConceptScore W2951891415C2778205975 @default.
- W2951891415 hasConceptScore W2951891415C2781326671 @default.
- W2951891415 hasConceptScore W2951891415C41008148 @default.
- W2951891415 hasConceptScore W2951891415C50644808 @default.
- W2951891415 hasConceptScore W2951891415C58471807 @default.
- W2951891415 hasConceptScore W2951891415C66905080 @default.
- W2951891415 hasConceptScore W2951891415C71924100 @default.
- W2951891415 hasConceptScore W2951891415C97931131 @default.
- W2951891415 hasLocation W29518914151 @default.
- W2951891415 hasLocation W29518914152 @default.
- W2951891415 hasOpenAccess W2951891415 @default.
- W2951891415 hasPrimaryLocation W29518914151 @default.
- W2951891415 hasRelatedWork W1973523152 @default.
- W2951891415 hasRelatedWork W2077193964 @default.
- W2951891415 hasRelatedWork W2101819884 @default.
- W2951891415 hasRelatedWork W2125629257 @default.
- W2951891415 hasRelatedWork W2915159483 @default.
- W2951891415 hasRelatedWork W2922076134 @default.
- W2951891415 hasRelatedWork W2951891415 @default.
- W2951891415 hasRelatedWork W2965476408 @default.
- W2951891415 hasRelatedWork W2999086204 @default.
- W2951891415 hasRelatedWork W2963240176 @default.
- W2951891415 isParatext "false" @default.
- W2951891415 isRetracted "false" @default.
- W2951891415 magId "2951891415" @default.
- W2951891415 workType "article" @default.