Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951896567> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2951896567 abstract "Electromyography (EMG) is a very suitable technique for the diagnosis of the skeletal muscle state. This work introduces a powerful tool for the analysis and the classification of myopathy and normal EMG signals. Continuous wavelet transform (CWT) was applied to a total of 406 EMG records. For the classification purpose, four statistical features were extracted from the continuous wavelet analysis. The classification is performed using k Nearest Neighborhood (k-NN) and Support Vector Machine (SVM) classifiers. 10-fold cross-validation method was used in this study since it delivered higher results. To evaluate the performances of the classifiers, metrics such as specificity, sensitivity and accuracy were calculated. Experimental results showed that both SVM and k-NN classifiers yielded high results. An accuracy value of 91.11 ±0.38 (Mean ± Standard Deviation) was obtained with k-NN classifier using 9 nearest neighbors. In regards to SVM, the classifier achieved an accuracy of 91.01±0.28 using the Radial Basis Function (RBF) kernel. The proposed technique demonstrated that it is an efficient tool in the discrimination between myopathic patients and normal subjects." @default.
- W2951896567 created "2019-06-27" @default.
- W2951896567 creator A5057139783 @default.
- W2951896567 creator A5060124483 @default.
- W2951896567 creator A5073591710 @default.
- W2951896567 date "2019-04-01" @default.
- W2951896567 modified "2023-10-12" @default.
- W2951896567 title "Classification and Diagnosis of Myopathy EMG Signals Using the Continuous Wavelet Transform" @default.
- W2951896567 cites W1981173169 @default.
- W2951896567 cites W1990567562 @default.
- W2951896567 cites W2012297890 @default.
- W2951896567 cites W2022234208 @default.
- W2951896567 cites W2031934350 @default.
- W2951896567 cites W2056933353 @default.
- W2951896567 cites W2093265755 @default.
- W2951896567 cites W2212700012 @default.
- W2951896567 cites W2504270968 @default.
- W2951896567 cites W2559522378 @default.
- W2951896567 cites W2561954922 @default.
- W2951896567 cites W2783029832 @default.
- W2951896567 cites W2801757277 @default.
- W2951896567 cites W2805290478 @default.
- W2951896567 doi "https://doi.org/10.1109/ebbt.2019.8742051" @default.
- W2951896567 hasPublicationYear "2019" @default.
- W2951896567 type Work @default.
- W2951896567 sameAs 2951896567 @default.
- W2951896567 citedByCount "12" @default.
- W2951896567 countsByYear W29518965672020 @default.
- W2951896567 countsByYear W29518965672021 @default.
- W2951896567 countsByYear W29518965672022 @default.
- W2951896567 countsByYear W29518965672023 @default.
- W2951896567 crossrefType "proceedings-article" @default.
- W2951896567 hasAuthorship W2951896567A5057139783 @default.
- W2951896567 hasAuthorship W2951896567A5060124483 @default.
- W2951896567 hasAuthorship W2951896567A5073591710 @default.
- W2951896567 hasConcept C105795698 @default.
- W2951896567 hasConcept C118552586 @default.
- W2951896567 hasConcept C122280245 @default.
- W2951896567 hasConcept C12267149 @default.
- W2951896567 hasConcept C142724271 @default.
- W2951896567 hasConcept C153180895 @default.
- W2951896567 hasConcept C154945302 @default.
- W2951896567 hasConcept C196216189 @default.
- W2951896567 hasConcept C22679943 @default.
- W2951896567 hasConcept C27181475 @default.
- W2951896567 hasConcept C2777300911 @default.
- W2951896567 hasConcept C2777515770 @default.
- W2951896567 hasConcept C28490314 @default.
- W2951896567 hasConcept C33923547 @default.
- W2951896567 hasConcept C41008148 @default.
- W2951896567 hasConcept C47432892 @default.
- W2951896567 hasConcept C50644808 @default.
- W2951896567 hasConcept C71924100 @default.
- W2951896567 hasConcept C75866337 @default.
- W2951896567 hasConcept C95623464 @default.
- W2951896567 hasConcept C98856871 @default.
- W2951896567 hasConceptScore W2951896567C105795698 @default.
- W2951896567 hasConceptScore W2951896567C118552586 @default.
- W2951896567 hasConceptScore W2951896567C122280245 @default.
- W2951896567 hasConceptScore W2951896567C12267149 @default.
- W2951896567 hasConceptScore W2951896567C142724271 @default.
- W2951896567 hasConceptScore W2951896567C153180895 @default.
- W2951896567 hasConceptScore W2951896567C154945302 @default.
- W2951896567 hasConceptScore W2951896567C196216189 @default.
- W2951896567 hasConceptScore W2951896567C22679943 @default.
- W2951896567 hasConceptScore W2951896567C27181475 @default.
- W2951896567 hasConceptScore W2951896567C2777300911 @default.
- W2951896567 hasConceptScore W2951896567C2777515770 @default.
- W2951896567 hasConceptScore W2951896567C28490314 @default.
- W2951896567 hasConceptScore W2951896567C33923547 @default.
- W2951896567 hasConceptScore W2951896567C41008148 @default.
- W2951896567 hasConceptScore W2951896567C47432892 @default.
- W2951896567 hasConceptScore W2951896567C50644808 @default.
- W2951896567 hasConceptScore W2951896567C71924100 @default.
- W2951896567 hasConceptScore W2951896567C75866337 @default.
- W2951896567 hasConceptScore W2951896567C95623464 @default.
- W2951896567 hasConceptScore W2951896567C98856871 @default.
- W2951896567 hasLocation W29518965671 @default.
- W2951896567 hasOpenAccess W2951896567 @default.
- W2951896567 hasPrimaryLocation W29518965671 @default.
- W2951896567 hasRelatedWork W1531884930 @default.
- W2951896567 hasRelatedWork W161633293 @default.
- W2951896567 hasRelatedWork W2015558867 @default.
- W2951896567 hasRelatedWork W2019243908 @default.
- W2951896567 hasRelatedWork W2073191574 @default.
- W2951896567 hasRelatedWork W2152497556 @default.
- W2951896567 hasRelatedWork W2155452364 @default.
- W2951896567 hasRelatedWork W2895972575 @default.
- W2951896567 hasRelatedWork W4200074722 @default.
- W2951896567 hasRelatedWork W4384652375 @default.
- W2951896567 isParatext "false" @default.
- W2951896567 isRetracted "false" @default.
- W2951896567 magId "2951896567" @default.
- W2951896567 workType "article" @default.