Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951906253> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2951906253 endingPage "1504" @default.
- W2951906253 startingPage "1502" @default.
- W2951906253 abstract "Cell type–specific RNA-seq studies have become increasingly common, whether they examine an entire population in bulk,5,12 or study its heterogeneity using single-cell analysis.8,19 Fortunately, bioinformaticians have worked to provide easy access to these data2,10,12 as well as developing re-analysis and meta-analysis tools for nonexpert users.1,17,20 Today, therefore, everyone can benefit from a wealth of independently replicated transcriptional information to enrich existing literature and quickly generate new hypotheses. Using some of these new resources, it takes just a few minutes to see that, in contrast to previous suggestions, the angiotensin type II receptor (AGTR2) is absent from human dorsal root ganglia samples (https://www.utdallas.edu/bbs/painneurosciencelab/)13,15; another few minutes to find evidence that advillin (Avil), a gene which was believed to be sensory neuron-specific,6 is also transcribed in mouse sympathetic neurons (mousebrain.org)19; and an hour of browsing various data sets,5,16 to discover that RNA-seq results currently do not support the hypothesis that Bdnf is expressed in microglia.3 Of course, RNA-seq data need to be considered in the context of their technical shortcomings. They are influenced by sequencing depth in a nonlinear way: typical guidelines for obtaining replicable results suggest removing the bottom third of all transcripts by expression level.14 Biases will be introduced by sorting methods (eg, cellular stress as a result of dissociation18) and choices in library preparation (eg, poly-A amplification misses many noncoding RNAs). Single-cell sequencing data suffer from a reverse transcription bottleneck where only a small fraction of all transcripts in a particular cell tend to be amplified.11 For instance, in a given cell, only 20 of 100 actin molecules might seem to be expressed, while lowly expressed genes may appear completely absent; however, all genes are usually visible when single-cell data are summed up to simulate a bulk profile.11 Unless cells are molecularly targeted, single-cell analysis also requires an additional cell type inference step, usually through clustering, that may be inaccurate.4 Finally, both bulk and single-cell RNA-seq experiments are very susceptible to batch effects7,14 and need to be carefully designed to avoid them. Beyond technical issues, it is best practice to validate RNA-seq with other methodologies, such as in situ hybridization and protein analyses. A good example of the latter are recent data on Agtr2 using a reporter mouse15 and Avil using a knockout validated antibody.9 Bearing this information in mind, the accompanying picture is designed as a cheat sheet–helping you understand the basics of RNA-seq and how to access and interpret the data. Navigating these resources will take some practice, but once you have mastered the art of browsing, RNA-seq data can be a great source of information and even joy–like sudden access to a secret library full of riveting books. Conflict of interest statement The authors have no conflict of interest to declare." @default.
- W2951906253 created "2019-06-27" @default.
- W2951906253 creator A5080195360 @default.
- W2951906253 creator A5084196640 @default.
- W2951906253 date "2019-07-01" @default.
- W2951906253 modified "2023-10-14" @default.
- W2951906253 title "RNA-seq data in pain research–an illustrated guide" @default.
- W2951906253 cites W1524141331 @default.
- W2951906253 cites W2027236524 @default.
- W2951906253 cites W2064397275 @default.
- W2951906253 cites W2076018286 @default.
- W2951906253 cites W2138453085 @default.
- W2951906253 cites W2143787026 @default.
- W2951906253 cites W2606527202 @default.
- W2951906253 cites W2759615793 @default.
- W2951906253 cites W2762851710 @default.
- W2951906253 cites W2788398310 @default.
- W2951906253 cites W2794891507 @default.
- W2951906253 cites W2804847416 @default.
- W2951906253 cites W2881279617 @default.
- W2951906253 cites W2889945919 @default.
- W2951906253 cites W2895035587 @default.
- W2951906253 cites W2899948177 @default.
- W2951906253 cites W2901059169 @default.
- W2951906253 cites W2949583997 @default.
- W2951906253 cites W2949693884 @default.
- W2951906253 cites W2953067954 @default.
- W2951906253 doi "https://doi.org/10.1097/j.pain.0000000000001562" @default.
- W2951906253 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7061694" @default.
- W2951906253 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31219951" @default.
- W2951906253 hasPublicationYear "2019" @default.
- W2951906253 type Work @default.
- W2951906253 sameAs 2951906253 @default.
- W2951906253 citedByCount "3" @default.
- W2951906253 countsByYear W29519062532020 @default.
- W2951906253 countsByYear W29519062532022 @default.
- W2951906253 crossrefType "journal-article" @default.
- W2951906253 hasAuthorship W2951906253A5080195360 @default.
- W2951906253 hasAuthorship W2951906253A5084196640 @default.
- W2951906253 hasBestOaLocation W29519062531 @default.
- W2951906253 hasConcept C104317684 @default.
- W2951906253 hasConcept C107397762 @default.
- W2951906253 hasConcept C1491633281 @default.
- W2951906253 hasConcept C150194340 @default.
- W2951906253 hasConcept C151730666 @default.
- W2951906253 hasConcept C162317418 @default.
- W2951906253 hasConcept C169760540 @default.
- W2951906253 hasConcept C189014844 @default.
- W2951906253 hasConcept C2779343474 @default.
- W2951906253 hasConcept C2908647359 @default.
- W2951906253 hasConcept C41008148 @default.
- W2951906253 hasConcept C54355233 @default.
- W2951906253 hasConcept C67705224 @default.
- W2951906253 hasConcept C70721500 @default.
- W2951906253 hasConcept C71924100 @default.
- W2951906253 hasConcept C86803240 @default.
- W2951906253 hasConcept C99454951 @default.
- W2951906253 hasConceptScore W2951906253C104317684 @default.
- W2951906253 hasConceptScore W2951906253C107397762 @default.
- W2951906253 hasConceptScore W2951906253C1491633281 @default.
- W2951906253 hasConceptScore W2951906253C150194340 @default.
- W2951906253 hasConceptScore W2951906253C151730666 @default.
- W2951906253 hasConceptScore W2951906253C162317418 @default.
- W2951906253 hasConceptScore W2951906253C169760540 @default.
- W2951906253 hasConceptScore W2951906253C189014844 @default.
- W2951906253 hasConceptScore W2951906253C2779343474 @default.
- W2951906253 hasConceptScore W2951906253C2908647359 @default.
- W2951906253 hasConceptScore W2951906253C41008148 @default.
- W2951906253 hasConceptScore W2951906253C54355233 @default.
- W2951906253 hasConceptScore W2951906253C67705224 @default.
- W2951906253 hasConceptScore W2951906253C70721500 @default.
- W2951906253 hasConceptScore W2951906253C71924100 @default.
- W2951906253 hasConceptScore W2951906253C86803240 @default.
- W2951906253 hasConceptScore W2951906253C99454951 @default.
- W2951906253 hasIssue "7" @default.
- W2951906253 hasLocation W29519062531 @default.
- W2951906253 hasLocation W29519062532 @default.
- W2951906253 hasLocation W29519062533 @default.
- W2951906253 hasLocation W29519062534 @default.
- W2951906253 hasLocation W29519062535 @default.
- W2951906253 hasOpenAccess W2951906253 @default.
- W2951906253 hasPrimaryLocation W29519062531 @default.
- W2951906253 hasRelatedWork W2904597490 @default.
- W2951906253 hasRelatedWork W3018634223 @default.
- W2951906253 hasRelatedWork W4250368784 @default.
- W2951906253 hasRelatedWork W4285162488 @default.
- W2951906253 hasRelatedWork W4362485908 @default.
- W2951906253 hasRelatedWork W4362511560 @default.
- W2951906253 hasRelatedWork W4362511917 @default.
- W2951906253 hasRelatedWork W4362512073 @default.
- W2951906253 hasRelatedWork W4362530199 @default.
- W2951906253 hasRelatedWork W4377231761 @default.
- W2951906253 hasVolume "160" @default.
- W2951906253 isParatext "false" @default.
- W2951906253 isRetracted "false" @default.
- W2951906253 magId "2951906253" @default.
- W2951906253 workType "article" @default.