Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951946723> ?p ?o ?g. }
- W2951946723 endingPage "3661" @default.
- W2951946723 startingPage "3645" @default.
- W2951946723 abstract "Abstract. Refractory black carbon (rBC) in the atmosphere is known for its significant impacts on climate. The relationship between the microphysical and optical properties of rBC remains poorly understood and is influenced by its size and mixing state. Mixing state also influences its cloud scavenging potential and thus atmospheric lifetime. This study presents a coupling of a centrifugal particle mass analyser (CPMA) and a single-particle soot photometer (SP2) for the morphology-independent quantification of the mixing state of rBC-containing particles, used in the urban site of Beijing as part of the Air Pollution and Human Health–Beijing (APHH-Beijing) project during winter (10 November–10 December 2016) and summer (18 May–25 June 2017). This represents a highly dynamic polluted environment with a wide variety of conditions that could be considered representative of megacity area sources in Asia. An inversion method (used for the first time on atmospheric aerosols) is applied to the measurements to present two-variable distributions of both rBC mass and total mass of rBC-containing particles and calculate the mass-resolved mixing state of rBC-containing particles, using previously published metrics. The mass ratio between non-rBC material and rBC material (MR) is calculated to determine the thickness of a hypothetical coating if the rBC and other material followed a concentric sphere model (the equivalent coating thickness). The bulk MR (MRbulk) was found to vary between 2 and 12 in winter and between 2 and 3 in summer. This mass-resolved mixing state is used to derive the mass-weighted mixing state index for the rBC-containing particles (χrBC). χrBC quantifies how uniformly the non-rBC material is distributed across the rBC-containing-particle population, with 100 % representing uniform mixing. The χrBC in Beijing varied between 55 % and 70 % in winter depending on the dominant air masses, and χrBC was highly correlated with increased MRbulk and PM1 mass concentration in winter, whereas χrBC in summer varied significantly (ranging 60 %–75 %) within the narrowly distributed MRbulk and was found to be independent of air mass sources. In some model treatments, it is assumed that more atmospheric ageing causes the BC to tend towards a more homogeneous mixture, but this leads to the conclusion that the MRbulk may only act as a predictor of χrBC in winter. The particle morphology-independent and mass-based information on BC mixing used in this and future studies can be applied to mixing-state-aware models investigating atmospheric rBC ageing." @default.
- W2951946723 created "2019-06-27" @default.
- W2951946723 creator A5028783832 @default.
- W2951946723 creator A5030983320 @default.
- W2951946723 creator A5040758444 @default.
- W2951946723 creator A5047352067 @default.
- W2951946723 creator A5057424833 @default.
- W2951946723 creator A5068441393 @default.
- W2951946723 creator A5070379325 @default.
- W2951946723 creator A5080094539 @default.
- W2951946723 creator A5087504796 @default.
- W2951946723 date "2020-03-26" @default.
- W2951946723 modified "2023-10-14" @default.
- W2951946723 title "Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method" @default.
- W2951946723 cites W1560749659 @default.
- W2951946723 cites W1907369419 @default.
- W2951946723 cites W1966085628 @default.
- W2951946723 cites W1987868927 @default.
- W2951946723 cites W1997490391 @default.
- W2951946723 cites W2022656631 @default.
- W2951946723 cites W2028999185 @default.
- W2951946723 cites W2035166278 @default.
- W2951946723 cites W2043437215 @default.
- W2951946723 cites W2066117140 @default.
- W2951946723 cites W2077856235 @default.
- W2951946723 cites W2080955504 @default.
- W2951946723 cites W2081118881 @default.
- W2951946723 cites W2081134248 @default.
- W2951946723 cites W2083988711 @default.
- W2951946723 cites W2084536394 @default.
- W2951946723 cites W2095850584 @default.
- W2951946723 cites W2099852381 @default.
- W2951946723 cites W2121685929 @default.
- W2951946723 cites W2123978936 @default.
- W2951946723 cites W2124337923 @default.
- W2951946723 cites W2140546795 @default.
- W2951946723 cites W2143125650 @default.
- W2951946723 cites W2145318668 @default.
- W2951946723 cites W2147053476 @default.
- W2951946723 cites W2149805869 @default.
- W2951946723 cites W2154338628 @default.
- W2951946723 cites W2159783447 @default.
- W2951946723 cites W2161183037 @default.
- W2951946723 cites W2162214076 @default.
- W2951946723 cites W2163706866 @default.
- W2951946723 cites W2165831326 @default.
- W2951946723 cites W2217254960 @default.
- W2951946723 cites W2322146677 @default.
- W2951946723 cites W2344147658 @default.
- W2951946723 cites W2346293290 @default.
- W2951946723 cites W2500451684 @default.
- W2951946723 cites W2514179904 @default.
- W2951946723 cites W2516692608 @default.
- W2951946723 cites W2560070554 @default.
- W2951946723 cites W2591619922 @default.
- W2951946723 cites W2766736668 @default.
- W2951946723 cites W2767689929 @default.
- W2951946723 cites W2781878852 @default.
- W2951946723 cites W2785046855 @default.
- W2951946723 cites W2787173411 @default.
- W2951946723 cites W2791084524 @default.
- W2951946723 cites W2804267160 @default.
- W2951946723 cites W2807336891 @default.
- W2951946723 cites W2888774828 @default.
- W2951946723 cites W2893795072 @default.
- W2951946723 cites W2894361124 @default.
- W2951946723 cites W2897135200 @default.
- W2951946723 cites W2901603400 @default.
- W2951946723 cites W2923077877 @default.
- W2951946723 cites W2950084570 @default.
- W2951946723 cites W2978725006 @default.
- W2951946723 cites W3102231179 @default.
- W2951946723 cites W4232773387 @default.
- W2951946723 doi "https://doi.org/10.5194/acp-20-3645-2020" @default.
- W2951946723 hasPublicationYear "2020" @default.
- W2951946723 type Work @default.
- W2951946723 sameAs 2951946723 @default.
- W2951946723 citedByCount "20" @default.
- W2951946723 countsByYear W29519467232020 @default.
- W2951946723 countsByYear W29519467232021 @default.
- W2951946723 countsByYear W29519467232022 @default.
- W2951946723 countsByYear W29519467232023 @default.
- W2951946723 crossrefType "journal-article" @default.
- W2951946723 hasAuthorship W2951946723A5028783832 @default.
- W2951946723 hasAuthorship W2951946723A5030983320 @default.
- W2951946723 hasAuthorship W2951946723A5040758444 @default.
- W2951946723 hasAuthorship W2951946723A5047352067 @default.
- W2951946723 hasAuthorship W2951946723A5057424833 @default.
- W2951946723 hasAuthorship W2951946723A5068441393 @default.
- W2951946723 hasAuthorship W2951946723A5070379325 @default.
- W2951946723 hasAuthorship W2951946723A5080094539 @default.
- W2951946723 hasAuthorship W2951946723A5087504796 @default.
- W2951946723 hasBestOaLocation W29519467231 @default.
- W2951946723 hasConcept C105923489 @default.
- W2951946723 hasConcept C111368507 @default.
- W2951946723 hasConcept C111603439 @default.
- W2951946723 hasConcept C121332964 @default.
- W2951946723 hasConcept C126857682 @default.