Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951954489> ?p ?o ?g. }
- W2951954489 abstract "During the last decade, the deluge of multimedia data has impacted a wide range of research areas, including multimedia retrieval, 3D tracking, database management, data mining, machine learning, social media analysis, medical imaging, and so on. Machine learning is largely involved in multimedia applications of building models for classification and regression tasks etc., and the learning principle consists in designing the models based on the information contained in the multimedia dataset. While many paradigms exist and are widely used in the context of machine learning, most of them suffer from the `curse of dimensionality', which means that some strange phenomena appears when data are represented in a high-dimensional space. Given the high dimensionality and the high complexity of multimedia data, it is important to investigate new machine learning algorithms to facilitate multimedia data analysis. To deal with the impact of high dimensionality, an intuitive way is to reduce the dimensionality. On the other hand, some researchers devoted themselves to designing some effective learning schemes for high-dimensional data. In this survey, we cover feature transformation, feature selection and feature encoding, three approaches fighting the consequences of the curse of dimensionality. Next, we briefly introduce some recent progress of effective learning algorithms. Finally, promising future trends on multimedia learning are envisaged." @default.
- W2951954489 created "2019-06-27" @default.
- W2951954489 creator A5024426380 @default.
- W2951954489 creator A5030814492 @default.
- W2951954489 creator A5036987388 @default.
- W2951954489 creator A5066645546 @default.
- W2951954489 creator A5072350518 @default.
- W2951954489 creator A5088843448 @default.
- W2951954489 date "2017-07-09" @default.
- W2951954489 modified "2023-10-14" @default.
- W2951954489 title "Learning in High-Dimensional Multimedia Data: The State of the Art" @default.
- W2951954489 cites W1480376833 @default.
- W2951954489 cites W1541459201 @default.
- W2951954489 cites W1565402342 @default.
- W2951954489 cites W1788809966 @default.
- W2951954489 cites W1932198206 @default.
- W2951954489 cites W1939575207 @default.
- W2951954489 cites W1960182310 @default.
- W2951954489 cites W1964009380 @default.
- W2951954489 cites W1969366022 @default.
- W2951954489 cites W1976921161 @default.
- W2951954489 cites W199018803 @default.
- W2951954489 cites W2000825879 @default.
- W2951954489 cites W2009059481 @default.
- W2951954489 cites W2014915963 @default.
- W2951954489 cites W2017337590 @default.
- W2951954489 cites W2023326318 @default.
- W2951954489 cites W2030321677 @default.
- W2951954489 cites W2035430745 @default.
- W2951954489 cites W2042970394 @default.
- W2951954489 cites W2049993534 @default.
- W2951954489 cites W2055194732 @default.
- W2951954489 cites W2058116810 @default.
- W2951954489 cites W2064797228 @default.
- W2951954489 cites W2069421937 @default.
- W2951954489 cites W2073301055 @default.
- W2951954489 cites W2077218694 @default.
- W2951954489 cites W2077723394 @default.
- W2951954489 cites W2077776048 @default.
- W2951954489 cites W2089632823 @default.
- W2951954489 cites W2100495367 @default.
- W2951954489 cites W2105101328 @default.
- W2951954489 cites W2110798204 @default.
- W2951954489 cites W2119479037 @default.
- W2951954489 cites W2128017662 @default.
- W2951954489 cites W2133257461 @default.
- W2951954489 cites W2134514757 @default.
- W2951954489 cites W2137570937 @default.
- W2951954489 cites W2139759436 @default.
- W2951954489 cites W2146502635 @default.
- W2951954489 cites W2147152072 @default.
- W2951954489 cites W2150593711 @default.
- W2951954489 cites W2153273131 @default.
- W2951954489 cites W2154956324 @default.
- W2951954489 cites W2155161883 @default.
- W2951954489 cites W2156758690 @default.
- W2951954489 cites W2156838815 @default.
- W2951954489 cites W2158169729 @default.
- W2951954489 cites W2161336914 @default.
- W2951954489 cites W2164338181 @default.
- W2951954489 cites W2167191085 @default.
- W2951954489 cites W2170314267 @default.
- W2951954489 cites W2184188583 @default.
- W2951954489 cites W2187483593 @default.
- W2951954489 cites W2221852422 @default.
- W2951954489 cites W2232538186 @default.
- W2951954489 cites W2251864938 @default.
- W2951954489 cites W2293597654 @default.
- W2951954489 cites W2913932916 @default.
- W2951954489 cites W2952320381 @default.
- W2951954489 cites W3023540311 @default.
- W2951954489 cites W3099514962 @default.
- W2951954489 cites W3104979525 @default.
- W2951954489 cites W33870844 @default.
- W2951954489 doi "https://doi.org/10.48550/arxiv.1707.02683" @default.
- W2951954489 hasPublicationYear "2017" @default.
- W2951954489 type Work @default.
- W2951954489 sameAs 2951954489 @default.
- W2951954489 citedByCount "0" @default.
- W2951954489 crossrefType "posted-content" @default.
- W2951954489 hasAuthorship W2951954489A5024426380 @default.
- W2951954489 hasAuthorship W2951954489A5030814492 @default.
- W2951954489 hasAuthorship W2951954489A5036987388 @default.
- W2951954489 hasAuthorship W2951954489A5066645546 @default.
- W2951954489 hasAuthorship W2951954489A5072350518 @default.
- W2951954489 hasAuthorship W2951954489A5088843448 @default.
- W2951954489 hasBestOaLocation W29519544891 @default.
- W2951954489 hasConcept C111030470 @default.
- W2951954489 hasConcept C119857082 @default.
- W2951954489 hasConcept C138885662 @default.
- W2951954489 hasConcept C148483581 @default.
- W2951954489 hasConcept C151730666 @default.
- W2951954489 hasConcept C151876577 @default.
- W2951954489 hasConcept C154945302 @default.
- W2951954489 hasConcept C2522767166 @default.
- W2951954489 hasConcept C2776401178 @default.
- W2951954489 hasConcept C2779343474 @default.
- W2951954489 hasConcept C41008148 @default.
- W2951954489 hasConcept C41895202 @default.
- W2951954489 hasConcept C49774154 @default.