Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951991161> ?p ?o ?g. }
- W2951991161 endingPage "1382" @default.
- W2951991161 startingPage "1382" @default.
- W2951991161 abstract "Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensing community. However, most existing deep learning-based CD methods are implemented by either generating difference images using deep features or learning change relations between pixel patches, which leads to error accumulation problems since many intermediate processing steps are needed to obtain final change maps. To address the above-mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-decoder architecture for semantic segmentation named UNet++, where change maps could be learned from scratch using available annotated datasets. Firstly, co-registered image pairs are concatenated as an input for the improved UNet++ network, where both global and fine-grained information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion strategy of multiple side outputs is adopted to combine change maps from different semantic levels, thereby generating a final change map with high accuracy. The effectiveness and reliability of our proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive experimental results have shown that our proposed approach outperforms the other state-of-the-art CD methods." @default.
- W2951991161 created "2019-06-27" @default.
- W2951991161 creator A5005124051 @default.
- W2951991161 creator A5035056634 @default.
- W2951991161 creator A5071358222 @default.
- W2951991161 date "2019-06-10" @default.
- W2951991161 modified "2023-10-10" @default.
- W2951991161 title "End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++" @default.
- W2951991161 cites W1964669384 @default.
- W2951991161 cites W1968573840 @default.
- W2951991161 cites W1974776350 @default.
- W2951991161 cites W1979061792 @default.
- W2951991161 cites W2011572981 @default.
- W2951991161 cites W2018700885 @default.
- W2951991161 cites W2029161185 @default.
- W2951991161 cites W2030257787 @default.
- W2951991161 cites W2036798369 @default.
- W2951991161 cites W2050072374 @default.
- W2951991161 cites W2085289201 @default.
- W2951991161 cites W2109255472 @default.
- W2951991161 cites W2144552105 @default.
- W2951991161 cites W2154451793 @default.
- W2951991161 cites W2157026765 @default.
- W2951991161 cites W2160544350 @default.
- W2951991161 cites W2170260354 @default.
- W2951991161 cites W2221448138 @default.
- W2951991161 cites W2278390009 @default.
- W2951991161 cites W2319456669 @default.
- W2951991161 cites W2341130385 @default.
- W2951991161 cites W2412588858 @default.
- W2951991161 cites W2431738724 @default.
- W2951991161 cites W2516616494 @default.
- W2951991161 cites W2521868507 @default.
- W2951991161 cites W2529419676 @default.
- W2951991161 cites W2587329506 @default.
- W2951991161 cites W2627081599 @default.
- W2951991161 cites W2741377155 @default.
- W2951991161 cites W2751993439 @default.
- W2951991161 cites W2766049824 @default.
- W2951991161 cites W2767778161 @default.
- W2951991161 cites W2775780988 @default.
- W2951991161 cites W2782522152 @default.
- W2951991161 cites W2792827505 @default.
- W2951991161 cites W2804528682 @default.
- W2951991161 cites W2805152403 @default.
- W2951991161 cites W2892135535 @default.
- W2951991161 cites W2894081147 @default.
- W2951991161 cites W2894544606 @default.
- W2951991161 cites W2894844962 @default.
- W2951991161 cites W2896092083 @default.
- W2951991161 cites W2905708425 @default.
- W2951991161 cites W2908048833 @default.
- W2951991161 cites W2908624219 @default.
- W2951991161 cites W2910587630 @default.
- W2951991161 cites W2911648799 @default.
- W2951991161 cites W2912323362 @default.
- W2951991161 cites W2918277739 @default.
- W2951991161 cites W2921430410 @default.
- W2951991161 cites W3010257550 @default.
- W2951991161 cites W3099831940 @default.
- W2951991161 doi "https://doi.org/10.3390/rs11111382" @default.
- W2951991161 hasPublicationYear "2019" @default.
- W2951991161 type Work @default.
- W2951991161 sameAs 2951991161 @default.
- W2951991161 citedByCount "362" @default.
- W2951991161 countsByYear W29519911612019 @default.
- W2951991161 countsByYear W29519911612020 @default.
- W2951991161 countsByYear W29519911612021 @default.
- W2951991161 countsByYear W29519911612022 @default.
- W2951991161 countsByYear W29519911612023 @default.
- W2951991161 crossrefType "journal-article" @default.
- W2951991161 hasAuthorship W2951991161A5005124051 @default.
- W2951991161 hasAuthorship W2951991161A5035056634 @default.
- W2951991161 hasAuthorship W2951991161A5071358222 @default.
- W2951991161 hasBestOaLocation W29519911611 @default.
- W2951991161 hasConcept C108583219 @default.
- W2951991161 hasConcept C111919701 @default.
- W2951991161 hasConcept C118505674 @default.
- W2951991161 hasConcept C121332964 @default.
- W2951991161 hasConcept C124101348 @default.
- W2951991161 hasConcept C127313418 @default.
- W2951991161 hasConcept C138885662 @default.
- W2951991161 hasConcept C153180895 @default.
- W2951991161 hasConcept C154945302 @default.
- W2951991161 hasConcept C163258240 @default.
- W2951991161 hasConcept C17744445 @default.
- W2951991161 hasConcept C199539241 @default.
- W2951991161 hasConcept C203595873 @default.
- W2951991161 hasConcept C2776359362 @default.
- W2951991161 hasConcept C2776401178 @default.
- W2951991161 hasConcept C41008148 @default.
- W2951991161 hasConcept C41895202 @default.
- W2951991161 hasConcept C43214815 @default.
- W2951991161 hasConcept C62520636 @default.
- W2951991161 hasConcept C62649853 @default.
- W2951991161 hasConcept C89600930 @default.
- W2951991161 hasConcept C94625758 @default.
- W2951991161 hasConceptScore W2951991161C108583219 @default.