Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951993677> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2951993677 abstract "Training deep learning models on mobile devices recently becomes possible, because of increasing computation power on mobile hardware and the advantages of enabling high user experiences. Most of the existing work on machine learning at mobile devices is focused on the inference of deep learning models (particularly convolutional neural network and recurrent neural network), but not training. The performance characterization of training deep learning models on mobile devices is largely unexplored, although understanding the performance characterization is critical for designing and implementing deep learning models on mobile devices. In this paper, we perform a variety of experiments on a representative mobile device (the NVIDIA TX2) to study the performance of training deep learning models. We introduce a benchmark suite and tools to study performance of training deep learning models on mobile devices, from the perspectives of memory consumption, hardware utilization, and power consumption. The tools can correlate performance results with fine-grained operations in deep learning models, providing capabilities to capture performance variance and problems at a fine granularity. We reveal interesting performance problems and opportunities, including under-utilization of heterogeneous hardware, large energy consumption of the memory, and high predictability of workload characterization. Based on the performance analysis, we suggest interesting research directions." @default.
- W2951993677 created "2019-06-27" @default.
- W2951993677 creator A5008911055 @default.
- W2951993677 creator A5009189364 @default.
- W2951993677 creator A5075544576 @default.
- W2951993677 creator A5085352453 @default.
- W2951993677 date "2019-06-10" @default.
- W2951993677 modified "2023-09-23" @default.
- W2951993677 title "Performance Analysis and Characterization of Training Deep Learning Models on NVIDIA TX2" @default.
- W2951993677 hasPublicationYear "2019" @default.
- W2951993677 type Work @default.
- W2951993677 sameAs 2951993677 @default.
- W2951993677 citedByCount "1" @default.
- W2951993677 countsByYear W29519936772021 @default.
- W2951993677 crossrefType "posted-content" @default.
- W2951993677 hasAuthorship W2951993677A5008911055 @default.
- W2951993677 hasAuthorship W2951993677A5009189364 @default.
- W2951993677 hasAuthorship W2951993677A5075544576 @default.
- W2951993677 hasAuthorship W2951993677A5085352453 @default.
- W2951993677 hasConcept C108583219 @default.
- W2951993677 hasConcept C111919701 @default.
- W2951993677 hasConcept C113775141 @default.
- W2951993677 hasConcept C118524514 @default.
- W2951993677 hasConcept C119857082 @default.
- W2951993677 hasConcept C13280743 @default.
- W2951993677 hasConcept C154945302 @default.
- W2951993677 hasConcept C185798385 @default.
- W2951993677 hasConcept C186967261 @default.
- W2951993677 hasConcept C205649164 @default.
- W2951993677 hasConcept C2776214188 @default.
- W2951993677 hasConcept C41008148 @default.
- W2951993677 hasConcept C50644808 @default.
- W2951993677 hasConcept C81363708 @default.
- W2951993677 hasConceptScore W2951993677C108583219 @default.
- W2951993677 hasConceptScore W2951993677C111919701 @default.
- W2951993677 hasConceptScore W2951993677C113775141 @default.
- W2951993677 hasConceptScore W2951993677C118524514 @default.
- W2951993677 hasConceptScore W2951993677C119857082 @default.
- W2951993677 hasConceptScore W2951993677C13280743 @default.
- W2951993677 hasConceptScore W2951993677C154945302 @default.
- W2951993677 hasConceptScore W2951993677C185798385 @default.
- W2951993677 hasConceptScore W2951993677C186967261 @default.
- W2951993677 hasConceptScore W2951993677C205649164 @default.
- W2951993677 hasConceptScore W2951993677C2776214188 @default.
- W2951993677 hasConceptScore W2951993677C41008148 @default.
- W2951993677 hasConceptScore W2951993677C50644808 @default.
- W2951993677 hasConceptScore W2951993677C81363708 @default.
- W2951993677 hasLocation W29519936771 @default.
- W2951993677 hasOpenAccess W2951993677 @default.
- W2951993677 hasPrimaryLocation W29519936771 @default.
- W2951993677 hasRelatedWork W2297325673 @default.
- W2951993677 hasRelatedWork W2516186566 @default.
- W2951993677 hasRelatedWork W2783839385 @default.
- W2951993677 hasRelatedWork W2793505646 @default.
- W2951993677 hasRelatedWork W2806738056 @default.
- W2951993677 hasRelatedWork W2909929243 @default.
- W2951993677 hasRelatedWork W2950973314 @default.
- W2951993677 hasRelatedWork W2977485436 @default.
- W2951993677 hasRelatedWork W2984448044 @default.
- W2951993677 hasRelatedWork W3033858814 @default.
- W2951993677 hasRelatedWork W3034174053 @default.
- W2951993677 hasRelatedWork W3080976800 @default.
- W2951993677 hasRelatedWork W3081330725 @default.
- W2951993677 hasRelatedWork W3117255825 @default.
- W2951993677 hasRelatedWork W3128932109 @default.
- W2951993677 hasRelatedWork W3153278392 @default.
- W2951993677 hasRelatedWork W3160548752 @default.
- W2951993677 hasRelatedWork W3175915085 @default.
- W2951993677 hasRelatedWork W3182045540 @default.
- W2951993677 hasRelatedWork W3126668110 @default.
- W2951993677 isParatext "false" @default.
- W2951993677 isRetracted "false" @default.
- W2951993677 magId "2951993677" @default.
- W2951993677 workType "article" @default.