Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952000815> ?p ?o ?g. }
- W2952000815 abstract "Abstract Short-term synaptic plasticity (STP) critically affects the processing of information in neuronal circuits by reversibly changing the effective strength of connections between neurons on time scales from milliseconds to a few seconds. STP is traditionally studied using intracellular recordings of postsynaptic potentials or currents evoked by presynaptic spikes. However, STP also affects the statistics of postsynaptic spikes. Here we present two model-based approaches for estimating synaptic weights and short-term plasticity from pre- and postsynaptic spike observations alone. We extend a generalized linear model (GLM) that predicts postsynaptic spiking as a function of the observed pre- and postsynaptic spikes and allow the connection strength (coupling term in the GLM) to vary as a function of time based on the history of presynaptic spikes. Our first model assumes that STP follows a Tsodyks-Markram description of vesicle depletion and recovery. In a second model, we introduce a functional description of STP where we estimate the coupling term as a biophysically unrestrained function of the presynaptic inter-spike intervals. To validate the models, we test the accuracy of STP estimation using the spiking of pre- and postsynaptic neurons with known synaptic dynamics. We first test our models using the responses of layer 2/3 pyramidal neurons to simulated presynaptic input with different types of STP, and then use simulated spike trains to examine the effects of spike-frequency adaptation, stochastic vesicle release, spike sorting errors, and common input. We find that, using only spike observations, both model-based methods can accurately reconstruct the time-varying synaptic weights of presynaptic inputs for different types of STP. Our models also capture the differences in postsynaptic spike responses to presynaptic spikes following short vs long inter-spike intervals, similar to results reported for thalamocortical connections. These models may thus be useful tools for characterizing short-term plasticity from multi-electrode spike recordings in vivo. Author Summary Information processing in the nervous system critically depends on dynamic changes in the strength of connections between neurons. Short-term synaptic plasticity (STP), changes that occur on timescales from milliseconds to a few seconds, is thought to play a role in tasks such as speech recognition, motion detection, and working memory. Although intracellular recordings in slices of neural tissue have identified synaptic mechanisms of STP and have demonstrated its potential role in information processing, studying STP in intact animals, especially during behavior, is experimentally difficult. Unlike intracellular recordings, extracellular spiking of hundreds of neurons simultaneously can be recorded even in behaving animals. Here we developed two models that allow estimation of STP from extracellular spike recordings. We validate these models using results from in vitro experiments which simulate a realistic synaptic input from a population of presynaptic neurons with defined STP rules. Our results show that both new models can accurately recover the synaptic dynamics underlying spiking. These new methods will allow us to study STP using extracellular recordings, and therefore on a much larger scale than previously possible in behaving animals." @default.
- W2952000815 created "2019-06-27" @default.
- W2952000815 creator A5048483727 @default.
- W2952000815 creator A5068090421 @default.
- W2952000815 creator A5074839572 @default.
- W2952000815 creator A5084603897 @default.
- W2952000815 date "2017-06-27" @default.
- W2952000815 modified "2023-10-18" @default.
- W2952000815 title "Estimating short-term synaptic plasticity from pre- and postsynaptic spiking" @default.
- W2952000815 cites W1484790805 @default.
- W2952000815 cites W1489333352 @default.
- W2952000815 cites W1497599289 @default.
- W2952000815 cites W1548401665 @default.
- W2952000815 cites W1582091054 @default.
- W2952000815 cites W1921182138 @default.
- W2952000815 cites W1965499003 @default.
- W2952000815 cites W1966527890 @default.
- W2952000815 cites W1972160853 @default.
- W2952000815 cites W1986870707 @default.
- W2952000815 cites W1987810063 @default.
- W2952000815 cites W1988384534 @default.
- W2952000815 cites W1999695968 @default.
- W2952000815 cites W2001860569 @default.
- W2952000815 cites W2001947879 @default.
- W2952000815 cites W2005717024 @default.
- W2952000815 cites W2007495909 @default.
- W2952000815 cites W2010655017 @default.
- W2952000815 cites W2028329394 @default.
- W2952000815 cites W2028388287 @default.
- W2952000815 cites W2032524925 @default.
- W2952000815 cites W2035969394 @default.
- W2952000815 cites W2049511526 @default.
- W2952000815 cites W2065176644 @default.
- W2952000815 cites W2065755494 @default.
- W2952000815 cites W2066519232 @default.
- W2952000815 cites W2069519142 @default.
- W2952000815 cites W2071585496 @default.
- W2952000815 cites W2072264193 @default.
- W2952000815 cites W2087185095 @default.
- W2952000815 cites W2094085718 @default.
- W2952000815 cites W2095478325 @default.
- W2952000815 cites W2095484045 @default.
- W2952000815 cites W2101574677 @default.
- W2952000815 cites W2103633115 @default.
- W2952000815 cites W2109843705 @default.
- W2952000815 cites W2112246597 @default.
- W2952000815 cites W2112601177 @default.
- W2952000815 cites W2112927743 @default.
- W2952000815 cites W2117010174 @default.
- W2952000815 cites W2128523475 @default.
- W2952000815 cites W2129983824 @default.
- W2952000815 cites W2136510748 @default.
- W2952000815 cites W2144398166 @default.
- W2952000815 cites W2148654448 @default.
- W2952000815 cites W2155754335 @default.
- W2952000815 cites W2160361560 @default.
- W2952000815 cites W2162019295 @default.
- W2952000815 cites W2168138935 @default.
- W2952000815 cites W2168462263 @default.
- W2952000815 cites W2169955913 @default.
- W2952000815 cites W2313604697 @default.
- W2952000815 cites W2343961702 @default.
- W2952000815 cites W2514675033 @default.
- W2952000815 cites W2556594148 @default.
- W2952000815 cites W2607821547 @default.
- W2952000815 cites W4210360421 @default.
- W2952000815 doi "https://doi.org/10.1101/156687" @default.
- W2952000815 hasPublicationYear "2017" @default.
- W2952000815 type Work @default.
- W2952000815 sameAs 2952000815 @default.
- W2952000815 citedByCount "0" @default.
- W2952000815 crossrefType "posted-content" @default.
- W2952000815 hasAuthorship W2952000815A5048483727 @default.
- W2952000815 hasAuthorship W2952000815A5068090421 @default.
- W2952000815 hasAuthorship W2952000815A5074839572 @default.
- W2952000815 hasAuthorship W2952000815A5084603897 @default.
- W2952000815 hasBestOaLocation W29520008151 @default.
- W2952000815 hasConcept C115903868 @default.
- W2952000815 hasConcept C121332964 @default.
- W2952000815 hasConcept C169760540 @default.
- W2952000815 hasConcept C170493617 @default.
- W2952000815 hasConcept C185592680 @default.
- W2952000815 hasConcept C186060115 @default.
- W2952000815 hasConcept C197341189 @default.
- W2952000815 hasConcept C2777613131 @default.
- W2952000815 hasConcept C2781390188 @default.
- W2952000815 hasConcept C2909946758 @default.
- W2952000815 hasConcept C41008148 @default.
- W2952000815 hasConcept C55493867 @default.
- W2952000815 hasConcept C79186407 @default.
- W2952000815 hasConcept C86803240 @default.
- W2952000815 hasConcept C97355855 @default.
- W2952000815 hasConcept C98229152 @default.
- W2952000815 hasConceptScore W2952000815C115903868 @default.
- W2952000815 hasConceptScore W2952000815C121332964 @default.
- W2952000815 hasConceptScore W2952000815C169760540 @default.
- W2952000815 hasConceptScore W2952000815C170493617 @default.
- W2952000815 hasConceptScore W2952000815C185592680 @default.
- W2952000815 hasConceptScore W2952000815C186060115 @default.
- W2952000815 hasConceptScore W2952000815C197341189 @default.