Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952013322> ?p ?o ?g. }
- W2952013322 endingPage "183" @default.
- W2952013322 startingPage "178" @default.
- W2952013322 abstract "Purpose Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy and it is associated with poor outcomes. A poor prognosis of DCM patients with low ejection fraction has been noted in the short-term follow-up. Machine learning (ML) could aid clinicians in risk stratification and patient management after considering the correlation between numerous features and the outcomes. The present study aimed to predict the 1-year cardiovascular events in patients with severe DCM using ML, and aid clinicians in risk stratification and patient management. Materials and Methods The dataset used to establish the ML model was obtained from 98 patients with severe DCM (LVEF < 35%) from two centres. Totally 32 features from clinical data were input to the ML algorithm, and the significant features highly relevant to the cardiovascular events were selected by Information gain (IG). A naive Bayes classifier was built, and its predictive performance was evaluated using the area under the curve (AUC) of the receiver operating characteristics by 10-fold cross-validation. Results During the 1-year follow-up, a total of 22 patients met the criterion of the study end-point. The top features with IG > 0.01 were selected for ML model, including left atrial size (IG = 0.240), QRS duration (IG = 0.200), and systolic blood pressure (IG = 0.151). ML performed well in predicting cardiovascular events in patients with severe DCM (AUC, 0.887 [95% confidence interval, 0.813–0.961]). Conclusions ML effectively predicted risk in patients with severe DCM in 1-year follow-up, and this may direct risk stratification and patient management in the future." @default.
- W2952013322 created "2019-06-27" @default.
- W2952013322 creator A5001194067 @default.
- W2952013322 creator A5002705877 @default.
- W2952013322 creator A5014271936 @default.
- W2952013322 creator A5015244667 @default.
- W2952013322 creator A5016767212 @default.
- W2952013322 creator A5023091028 @default.
- W2952013322 creator A5036984823 @default.
- W2952013322 creator A5042219958 @default.
- W2952013322 creator A5045410462 @default.
- W2952013322 creator A5065179469 @default.
- W2952013322 creator A5078975485 @default.
- W2952013322 date "2019-08-01" @default.
- W2952013322 modified "2023-10-16" @default.
- W2952013322 title "Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy" @default.
- W2952013322 cites W1967452892 @default.
- W2952013322 cites W1972186906 @default.
- W2952013322 cites W2001984572 @default.
- W2952013322 cites W2008391683 @default.
- W2952013322 cites W2023927362 @default.
- W2952013322 cites W2025910848 @default.
- W2952013322 cites W2059978718 @default.
- W2952013322 cites W2083780116 @default.
- W2952013322 cites W2109676405 @default.
- W2952013322 cites W2121842052 @default.
- W2952013322 cites W2140785063 @default.
- W2952013322 cites W2151173136 @default.
- W2952013322 cites W2157815735 @default.
- W2952013322 cites W2160117042 @default.
- W2952013322 cites W2215402208 @default.
- W2952013322 cites W2320264340 @default.
- W2952013322 cites W2328176404 @default.
- W2952013322 cites W2329687194 @default.
- W2952013322 cites W2464496825 @default.
- W2952013322 cites W2496911238 @default.
- W2952013322 cites W2734625065 @default.
- W2952013322 cites W2743269518 @default.
- W2952013322 cites W4211001885 @default.
- W2952013322 doi "https://doi.org/10.1016/j.ejrad.2019.06.004" @default.
- W2952013322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31307645" @default.
- W2952013322 hasPublicationYear "2019" @default.
- W2952013322 type Work @default.
- W2952013322 sameAs 2952013322 @default.
- W2952013322 citedByCount "22" @default.
- W2952013322 countsByYear W29520133222020 @default.
- W2952013322 countsByYear W29520133222021 @default.
- W2952013322 countsByYear W29520133222022 @default.
- W2952013322 countsByYear W29520133222023 @default.
- W2952013322 crossrefType "journal-article" @default.
- W2952013322 hasAuthorship W2952013322A5001194067 @default.
- W2952013322 hasAuthorship W2952013322A5002705877 @default.
- W2952013322 hasAuthorship W2952013322A5014271936 @default.
- W2952013322 hasAuthorship W2952013322A5015244667 @default.
- W2952013322 hasAuthorship W2952013322A5016767212 @default.
- W2952013322 hasAuthorship W2952013322A5023091028 @default.
- W2952013322 hasAuthorship W2952013322A5036984823 @default.
- W2952013322 hasAuthorship W2952013322A5042219958 @default.
- W2952013322 hasAuthorship W2952013322A5045410462 @default.
- W2952013322 hasAuthorship W2952013322A5065179469 @default.
- W2952013322 hasAuthorship W2952013322A5078975485 @default.
- W2952013322 hasConcept C126322002 @default.
- W2952013322 hasConcept C164705383 @default.
- W2952013322 hasConcept C2776383484 @default.
- W2952013322 hasConcept C2778198053 @default.
- W2952013322 hasConcept C2778797674 @default.
- W2952013322 hasConcept C3020404979 @default.
- W2952013322 hasConcept C44249647 @default.
- W2952013322 hasConcept C58471807 @default.
- W2952013322 hasConcept C71924100 @default.
- W2952013322 hasConcept C76318530 @default.
- W2952013322 hasConcept C78085059 @default.
- W2952013322 hasConceptScore W2952013322C126322002 @default.
- W2952013322 hasConceptScore W2952013322C164705383 @default.
- W2952013322 hasConceptScore W2952013322C2776383484 @default.
- W2952013322 hasConceptScore W2952013322C2778198053 @default.
- W2952013322 hasConceptScore W2952013322C2778797674 @default.
- W2952013322 hasConceptScore W2952013322C3020404979 @default.
- W2952013322 hasConceptScore W2952013322C44249647 @default.
- W2952013322 hasConceptScore W2952013322C58471807 @default.
- W2952013322 hasConceptScore W2952013322C71924100 @default.
- W2952013322 hasConceptScore W2952013322C76318530 @default.
- W2952013322 hasConceptScore W2952013322C78085059 @default.
- W2952013322 hasFunder F4320321001 @default.
- W2952013322 hasLocation W29520133221 @default.
- W2952013322 hasLocation W29520133222 @default.
- W2952013322 hasOpenAccess W2952013322 @default.
- W2952013322 hasPrimaryLocation W29520133221 @default.
- W2952013322 hasRelatedWork W2008911041 @default.
- W2952013322 hasRelatedWork W2051966709 @default.
- W2952013322 hasRelatedWork W2373132269 @default.
- W2952013322 hasRelatedWork W2390926424 @default.
- W2952013322 hasRelatedWork W2392162854 @default.
- W2952013322 hasRelatedWork W2744023513 @default.
- W2952013322 hasRelatedWork W2949466702 @default.
- W2952013322 hasRelatedWork W4237394904 @default.
- W2952013322 hasRelatedWork W49369087 @default.
- W2952013322 hasRelatedWork W3030915957 @default.