Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952013914> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2952013914 abstract "User profiling is becoming increasingly holistic by including aspects of the user that until a few years ago seemed irrelevant. The content that users produce on the Internet and social networks is an essential source of information about their habits, preferences, and behaviors in many situations. One factor that has proved to be very important for obtaining a complete user profile that includes her psychological traits are the emotions experienced. Therefore, it is of great interest to the research community to develop approaches for identifying emotions from the text that are accurate and robust in situations of everyday writing. In this work, we propose a classification approach based on deep neural networks, Bi-LSTM, CNN, and self-attention demonstrating its effectiveness on different datasets. Moreover, we compare three pre-trained word-embeddings for words encoding. The encouraging results obtained on state-of-the-art datasets allow us to confirm the validity of the model and to discuss what are the best word embeddings to adopt for the task of emotion detection. As a consequence of the great importance of deep learning in the research community, we promote our model as a starting point for further investigations in the domain." @default.
- W2952013914 created "2019-06-27" @default.
- W2952013914 creator A5014793020 @default.
- W2952013914 creator A5020864885 @default.
- W2952013914 creator A5059814300 @default.
- W2952013914 creator A5070784701 @default.
- W2952013914 date "2019-06-06" @default.
- W2952013914 modified "2023-10-13" @default.
- W2952013914 title "A Comparison of Word-Embeddings in Emotion Detection from Text using BiLSTM, CNN and Self-Attention" @default.
- W2952013914 cites W1569507287 @default.
- W2952013914 cites W2032020379 @default.
- W2952013914 cites W2064675550 @default.
- W2952013914 cites W2117130368 @default.
- W2952013914 cites W2143549838 @default.
- W2952013914 cites W2149628368 @default.
- W2952013914 cites W2250539671 @default.
- W2952013914 cites W2493916176 @default.
- W2952013914 cites W2586790131 @default.
- W2952013914 cites W2752201871 @default.
- W2952013914 cites W2796430037 @default.
- W2952013914 cites W2805173585 @default.
- W2952013914 cites W2805744755 @default.
- W2952013914 cites W2806872289 @default.
- W2952013914 cites W2955429306 @default.
- W2952013914 cites W2964236337 @default.
- W2952013914 cites W2998704965 @default.
- W2952013914 cites W4205184193 @default.
- W2952013914 cites W4296976275 @default.
- W2952013914 doi "https://doi.org/10.1145/3314183.3324983" @default.
- W2952013914 hasPublicationYear "2019" @default.
- W2952013914 type Work @default.
- W2952013914 sameAs 2952013914 @default.
- W2952013914 citedByCount "31" @default.
- W2952013914 countsByYear W29520139142019 @default.
- W2952013914 countsByYear W29520139142020 @default.
- W2952013914 countsByYear W29520139142021 @default.
- W2952013914 countsByYear W29520139142022 @default.
- W2952013914 countsByYear W29520139142023 @default.
- W2952013914 crossrefType "proceedings-article" @default.
- W2952013914 hasAuthorship W2952013914A5014793020 @default.
- W2952013914 hasAuthorship W2952013914A5020864885 @default.
- W2952013914 hasAuthorship W2952013914A5059814300 @default.
- W2952013914 hasAuthorship W2952013914A5070784701 @default.
- W2952013914 hasConcept C108583219 @default.
- W2952013914 hasConcept C111919701 @default.
- W2952013914 hasConcept C134306372 @default.
- W2952013914 hasConcept C138885662 @default.
- W2952013914 hasConcept C154945302 @default.
- W2952013914 hasConcept C162324750 @default.
- W2952013914 hasConcept C187191949 @default.
- W2952013914 hasConcept C187736073 @default.
- W2952013914 hasConcept C204321447 @default.
- W2952013914 hasConcept C2780451532 @default.
- W2952013914 hasConcept C33923547 @default.
- W2952013914 hasConcept C36503486 @default.
- W2952013914 hasConcept C41008148 @default.
- W2952013914 hasConcept C41895202 @default.
- W2952013914 hasConcept C90805587 @default.
- W2952013914 hasConceptScore W2952013914C108583219 @default.
- W2952013914 hasConceptScore W2952013914C111919701 @default.
- W2952013914 hasConceptScore W2952013914C134306372 @default.
- W2952013914 hasConceptScore W2952013914C138885662 @default.
- W2952013914 hasConceptScore W2952013914C154945302 @default.
- W2952013914 hasConceptScore W2952013914C162324750 @default.
- W2952013914 hasConceptScore W2952013914C187191949 @default.
- W2952013914 hasConceptScore W2952013914C187736073 @default.
- W2952013914 hasConceptScore W2952013914C204321447 @default.
- W2952013914 hasConceptScore W2952013914C2780451532 @default.
- W2952013914 hasConceptScore W2952013914C33923547 @default.
- W2952013914 hasConceptScore W2952013914C36503486 @default.
- W2952013914 hasConceptScore W2952013914C41008148 @default.
- W2952013914 hasConceptScore W2952013914C41895202 @default.
- W2952013914 hasConceptScore W2952013914C90805587 @default.
- W2952013914 hasLocation W29520139141 @default.
- W2952013914 hasOpenAccess W2952013914 @default.
- W2952013914 hasPrimaryLocation W29520139141 @default.
- W2952013914 hasRelatedWork W1539050421 @default.
- W2952013914 hasRelatedWork W1563147278 @default.
- W2952013914 hasRelatedWork W2348361596 @default.
- W2952013914 hasRelatedWork W2731899572 @default.
- W2952013914 hasRelatedWork W2773616286 @default.
- W2952013914 hasRelatedWork W2887872604 @default.
- W2952013914 hasRelatedWork W2939353110 @default.
- W2952013914 hasRelatedWork W3009238340 @default.
- W2952013914 hasRelatedWork W3215138031 @default.
- W2952013914 hasRelatedWork W4206085922 @default.
- W2952013914 isParatext "false" @default.
- W2952013914 isRetracted "false" @default.
- W2952013914 magId "2952013914" @default.
- W2952013914 workType "article" @default.