Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952040342> ?p ?o ?g. }
- W2952040342 abstract "Convolutional nets have been shown to achieve state-of-the-art accuracy in many biomedical image analysis tasks. Many tasks within biomedical analysis domain involve analyzing volumetric (3D) data acquired by CT, MRI and Microscopy acquisition methods. To deploy convolutional nets in practical working systems, it is important to solve the efficient inference problem. Namely, one should be able to apply an already-trained convolutional network to many large images using limited computational resources. In this paper we present PZnet, a CPU-only engine that can be used to perform inference for a variety of 3D convolutional net architectures. PZNet outperforms MKL-based CPU implementations of PyTorch and Tensorflow by more than 3.5x for the popular U-net architecture. Moreover, for 3D convolutions with low featuremap numbers, cloud CPU inference with PZnet outperfroms cloud GPU inference in terms of cost efficiency." @default.
- W2952040342 created "2019-06-27" @default.
- W2952040342 creator A5011749657 @default.
- W2952040342 creator A5029097412 @default.
- W2952040342 creator A5037981694 @default.
- W2952040342 creator A5044273339 @default.
- W2952040342 creator A5051363890 @default.
- W2952040342 date "2019-03-18" @default.
- W2952040342 modified "2023-09-27" @default.
- W2952040342 title "PZnet: Efficient 3D ConvNet Inference on Manycore CPUs." @default.
- W2952040342 cites W1533861849 @default.
- W2952040342 cites W1606347560 @default.
- W2952040342 cites W1901129140 @default.
- W2952040342 cites W1948751323 @default.
- W2952040342 cites W2010114799 @default.
- W2952040342 cites W2106146968 @default.
- W2952040342 cites W2155893237 @default.
- W2952040342 cites W2186615578 @default.
- W2952040342 cites W2402144811 @default.
- W2952040342 cites W2464708700 @default.
- W2952040342 cites W2517954747 @default.
- W2952040342 cites W2565639579 @default.
- W2952040342 cites W2582996697 @default.
- W2952040342 cites W2592929672 @default.
- W2952040342 cites W2604319603 @default.
- W2952040342 cites W2617189289 @default.
- W2952040342 cites W2617669016 @default.
- W2952040342 cites W2621042378 @default.
- W2952040342 cites W2770241596 @default.
- W2952040342 cites W2949808130 @default.
- W2952040342 cites W2963428668 @default.
- W2952040342 cites W753012316 @default.
- W2952040342 hasPublicationYear "2019" @default.
- W2952040342 type Work @default.
- W2952040342 sameAs 2952040342 @default.
- W2952040342 citedByCount "1" @default.
- W2952040342 countsByYear W29520403422019 @default.
- W2952040342 crossrefType "posted-content" @default.
- W2952040342 hasAuthorship W2952040342A5011749657 @default.
- W2952040342 hasAuthorship W2952040342A5029097412 @default.
- W2952040342 hasAuthorship W2952040342A5037981694 @default.
- W2952040342 hasAuthorship W2952040342A5044273339 @default.
- W2952040342 hasAuthorship W2952040342A5051363890 @default.
- W2952040342 hasConcept C111919701 @default.
- W2952040342 hasConcept C113775141 @default.
- W2952040342 hasConcept C115903868 @default.
- W2952040342 hasConcept C119857082 @default.
- W2952040342 hasConcept C134306372 @default.
- W2952040342 hasConcept C154945302 @default.
- W2952040342 hasConcept C173608175 @default.
- W2952040342 hasConcept C26713055 @default.
- W2952040342 hasConcept C2776214188 @default.
- W2952040342 hasConcept C33923547 @default.
- W2952040342 hasConcept C36503486 @default.
- W2952040342 hasConcept C41008148 @default.
- W2952040342 hasConcept C45347329 @default.
- W2952040342 hasConcept C49154492 @default.
- W2952040342 hasConcept C50644808 @default.
- W2952040342 hasConcept C79974875 @default.
- W2952040342 hasConcept C81363708 @default.
- W2952040342 hasConcept C9390403 @default.
- W2952040342 hasConceptScore W2952040342C111919701 @default.
- W2952040342 hasConceptScore W2952040342C113775141 @default.
- W2952040342 hasConceptScore W2952040342C115903868 @default.
- W2952040342 hasConceptScore W2952040342C119857082 @default.
- W2952040342 hasConceptScore W2952040342C134306372 @default.
- W2952040342 hasConceptScore W2952040342C154945302 @default.
- W2952040342 hasConceptScore W2952040342C173608175 @default.
- W2952040342 hasConceptScore W2952040342C26713055 @default.
- W2952040342 hasConceptScore W2952040342C2776214188 @default.
- W2952040342 hasConceptScore W2952040342C33923547 @default.
- W2952040342 hasConceptScore W2952040342C36503486 @default.
- W2952040342 hasConceptScore W2952040342C41008148 @default.
- W2952040342 hasConceptScore W2952040342C45347329 @default.
- W2952040342 hasConceptScore W2952040342C49154492 @default.
- W2952040342 hasConceptScore W2952040342C50644808 @default.
- W2952040342 hasConceptScore W2952040342C79974875 @default.
- W2952040342 hasConceptScore W2952040342C81363708 @default.
- W2952040342 hasConceptScore W2952040342C9390403 @default.
- W2952040342 hasLocation W29520403421 @default.
- W2952040342 hasOpenAccess W2952040342 @default.
- W2952040342 hasPrimaryLocation W29520403421 @default.
- W2952040342 hasRelatedWork W1616193705 @default.
- W2952040342 hasRelatedWork W2167215970 @default.
- W2952040342 hasRelatedWork W2473113737 @default.
- W2952040342 hasRelatedWork W2690141065 @default.
- W2952040342 hasRelatedWork W2774841044 @default.
- W2952040342 hasRelatedWork W2782014963 @default.
- W2952040342 hasRelatedWork W2934222362 @default.
- W2952040342 hasRelatedWork W2952713184 @default.
- W2952040342 hasRelatedWork W2953264125 @default.
- W2952040342 hasRelatedWork W2963705792 @default.
- W2952040342 hasRelatedWork W2964259004 @default.
- W2952040342 hasRelatedWork W2971874466 @default.
- W2952040342 hasRelatedWork W3011121930 @default.
- W2952040342 hasRelatedWork W3045877795 @default.
- W2952040342 hasRelatedWork W3101434632 @default.
- W2952040342 hasRelatedWork W3113443077 @default.
- W2952040342 hasRelatedWork W3115410382 @default.
- W2952040342 hasRelatedWork W3125082172 @default.