Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952041259> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2952041259 abstract "We consider a set $mbK = bigcup_{n in mbbN}mbK_n$ of {em finite} structures such that all members of $mbK_n$ have the same universe, the cardinality of which approaches $infty$ as $ntoinfty$. Each structure in $mbK$ may have a nontrivial underlying pregeometry and on each $mbK_n$ we consider a probability measure, either the uniform measure, or what we call the {em dimension conditional measure}. The main questions are: What conditions imply that for every extension axiom $varphi$, compatible with the defining properties of $mbK$, the probability that $varphi$ is true in a member of $mbK_n$ approaches 1 as $n to infty$? And what conditions imply that this is not the case, possibly in the strong sense that the mentioned probability approaches 0 for some $varphi$? If each $mbK_n$ is the set of structures with universe ${1, ..., n}$, in a fixed relational language, in which certain structures cannot be weakly embedded and $mbK$ has the disjoint amalgamation property, then there is a condition (concerning the set of forbidden structures) which, if we consider the uniform measure, gives a dichotomy; i.e. the condition holds if and only if the answer to the first question is `yes'. In general, we do not obtain a dichotomy, but we do obtain a condition guaranteeing that the answer is `yes' for the first question, as well as a condition guaranteeing that the answer is `no'; and we give examples showing that in the gap between these conditions the answer may be either `yes' or `no'. This analysis is made for both the uniform measure and for the dimension conditional measure. The later measure has closer relation to random generation of structures and is more generous with respect to satisfiability of extension axioms." @default.
- W2952041259 created "2019-06-27" @default.
- W2952041259 creator A5029621829 @default.
- W2952041259 date "2012-04-11" @default.
- W2952041259 modified "2023-09-27" @default.
- W2952041259 title "Asymptotic probabilities of extension properties and random $l$-colourable structures" @default.
- W2952041259 cites W108214179 @default.
- W2952041259 cites W1508184538 @default.
- W2952041259 cites W1532176944 @default.
- W2952041259 cites W1574394872 @default.
- W2952041259 cites W1580733925 @default.
- W2952041259 cites W2023561941 @default.
- W2952041259 cites W2024244453 @default.
- W2952041259 cites W2052770391 @default.
- W2952041259 cites W2056789578 @default.
- W2952041259 cites W2060185368 @default.
- W2952041259 cites W2103229001 @default.
- W2952041259 cites W2137099410 @default.
- W2952041259 cites W2321656971 @default.
- W2952041259 cites W66730793 @default.
- W2952041259 hasPublicationYear "2012" @default.
- W2952041259 type Work @default.
- W2952041259 sameAs 2952041259 @default.
- W2952041259 citedByCount "0" @default.
- W2952041259 crossrefType "posted-content" @default.
- W2952041259 hasAuthorship W2952041259A5029621829 @default.
- W2952041259 hasConcept C114614502 @default.
- W2952041259 hasConcept C118615104 @default.
- W2952041259 hasConcept C124101348 @default.
- W2952041259 hasConcept C167729594 @default.
- W2952041259 hasConcept C177264268 @default.
- W2952041259 hasConcept C199360897 @default.
- W2952041259 hasConcept C21031990 @default.
- W2952041259 hasConcept C2524010 @default.
- W2952041259 hasConcept C2778029271 @default.
- W2952041259 hasConcept C2780009758 @default.
- W2952041259 hasConcept C33923547 @default.
- W2952041259 hasConcept C41008148 @default.
- W2952041259 hasConcept C45340560 @default.
- W2952041259 hasConcept C77088390 @default.
- W2952041259 hasConcept C87117476 @default.
- W2952041259 hasConceptScore W2952041259C114614502 @default.
- W2952041259 hasConceptScore W2952041259C118615104 @default.
- W2952041259 hasConceptScore W2952041259C124101348 @default.
- W2952041259 hasConceptScore W2952041259C167729594 @default.
- W2952041259 hasConceptScore W2952041259C177264268 @default.
- W2952041259 hasConceptScore W2952041259C199360897 @default.
- W2952041259 hasConceptScore W2952041259C21031990 @default.
- W2952041259 hasConceptScore W2952041259C2524010 @default.
- W2952041259 hasConceptScore W2952041259C2778029271 @default.
- W2952041259 hasConceptScore W2952041259C2780009758 @default.
- W2952041259 hasConceptScore W2952041259C33923547 @default.
- W2952041259 hasConceptScore W2952041259C41008148 @default.
- W2952041259 hasConceptScore W2952041259C45340560 @default.
- W2952041259 hasConceptScore W2952041259C77088390 @default.
- W2952041259 hasConceptScore W2952041259C87117476 @default.
- W2952041259 hasLocation W29520412591 @default.
- W2952041259 hasOpenAccess W2952041259 @default.
- W2952041259 hasPrimaryLocation W29520412591 @default.
- W2952041259 hasRelatedWork W1513501449 @default.
- W2952041259 hasRelatedWork W1589870803 @default.
- W2952041259 hasRelatedWork W2015329281 @default.
- W2952041259 hasRelatedWork W2045362720 @default.
- W2952041259 hasRelatedWork W204859252 @default.
- W2952041259 hasRelatedWork W2081255021 @default.
- W2952041259 hasRelatedWork W2169637158 @default.
- W2952041259 hasRelatedWork W2182255386 @default.
- W2952041259 hasRelatedWork W2285506025 @default.
- W2952041259 hasRelatedWork W2592336120 @default.
- W2952041259 hasRelatedWork W2740529146 @default.
- W2952041259 hasRelatedWork W2787207988 @default.
- W2952041259 hasRelatedWork W2804880177 @default.
- W2952041259 hasRelatedWork W2950902531 @default.
- W2952041259 hasRelatedWork W2952984062 @default.
- W2952041259 hasRelatedWork W3026795509 @default.
- W2952041259 hasRelatedWork W3101258384 @default.
- W2952041259 hasRelatedWork W3210803605 @default.
- W2952041259 hasRelatedWork W1649061244 @default.
- W2952041259 hasRelatedWork W3151833102 @default.
- W2952041259 isParatext "false" @default.
- W2952041259 isRetracted "false" @default.
- W2952041259 magId "2952041259" @default.
- W2952041259 workType "article" @default.