Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952045193> ?p ?o ?g. }
- W2952045193 endingPage "111238" @default.
- W2952045193 startingPage "111238" @default.
- W2952045193 abstract "Abstract Forest ecosystems have been increasingly affected by a variety of disturbances, including emerging infectious diseases (EIDs), causing extensive tree mortality in the Western United States. Especially over the past decade, EID outbreaks occurred more frequently and severely in forest landscapes, which have killed large numbers of trees. While tree mortality is observable from remote sensing, its symptom may be associated with both disease and non-disease disturbances (e.g., wildfire and drought). Species distribution modeling is widely used to understand species spatial preferences for certain habitat conditions, which may constrain uncertain remote sensing approaches due to limited spatial and spectral resolution. In this study, we integrated multi-sensor remote sensing and species distribution modeling to map disease-caused tree mortality in a forested area of 80,000 ha from 2005 to 2016. We selected sudden oak death (caused by pathogen P. ramorum) as a case study of a rapidly spreading emerging infectious disease, which has killed millions of oak (Quercus spp.) and tanoak (Lithocarpus densiflorus) in California over the past decades. To balance the needs for fine-scale monitoring of disease distribution patterns and satisfactory coverage at broad scales, our method applied spectral unmixing to extract sub-pixel disease presence using yearly Landsat time series. The results were improved by employing the probability of disease infection generated from a species distribution model. We calibrated and validated the method with image samples from high-spatial resolution NAIP (National Agriculture Imagery Program), and hyperspectral AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensors, Google Earth® imagery, and field observations. The findings reveal an annual sudden oak death infection rate of 7% from 2005 to 2016, with overall mapping accuracies ranging from 76% to 83%. The integration of multi-sensor remote sensing and species distribution modeling considerably reduced the overestimation of disease effects as compared to the use of remote sensing alone, leading to an average of 26% decrease in detecting disease-affected trees. Such integration strategy proved the effectiveness of mapping long-term, disease-caused tree mortality in forest landscapes that have experienced multiple disturbances." @default.
- W2952045193 created "2019-06-27" @default.
- W2952045193 creator A5011456727 @default.
- W2952045193 creator A5033020599 @default.
- W2952045193 creator A5041666616 @default.
- W2952045193 creator A5045067652 @default.
- W2952045193 date "2019-09-01" @default.
- W2952045193 modified "2023-10-13" @default.
- W2952045193 title "Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality" @default.
- W2952045193 cites W126936368 @default.
- W2952045193 cites W1541774929 @default.
- W2952045193 cites W1966489326 @default.
- W2952045193 cites W1973322472 @default.
- W2952045193 cites W1984806043 @default.
- W2952045193 cites W1989203457 @default.
- W2952045193 cites W1996721947 @default.
- W2952045193 cites W1998998399 @default.
- W2952045193 cites W1999951721 @default.
- W2952045193 cites W2008397332 @default.
- W2952045193 cites W2011688956 @default.
- W2952045193 cites W2013435024 @default.
- W2952045193 cites W2015502627 @default.
- W2952045193 cites W2027944437 @default.
- W2952045193 cites W2040456657 @default.
- W2952045193 cites W2042039453 @default.
- W2952045193 cites W2045551504 @default.
- W2952045193 cites W2065533253 @default.
- W2952045193 cites W2079594423 @default.
- W2952045193 cites W2080040805 @default.
- W2952045193 cites W2081895269 @default.
- W2952045193 cites W2081964130 @default.
- W2952045193 cites W2083442268 @default.
- W2952045193 cites W2084988036 @default.
- W2952045193 cites W2085937120 @default.
- W2952045193 cites W2090288567 @default.
- W2952045193 cites W2097601813 @default.
- W2952045193 cites W2103919309 @default.
- W2952045193 cites W2108125566 @default.
- W2952045193 cites W2109291191 @default.
- W2952045193 cites W2112887935 @default.
- W2952045193 cites W2115265399 @default.
- W2952045193 cites W2122629113 @default.
- W2952045193 cites W2125833954 @default.
- W2952045193 cites W2132254275 @default.
- W2952045193 cites W2133876538 @default.
- W2952045193 cites W2135680257 @default.
- W2952045193 cites W2138078010 @default.
- W2952045193 cites W2139709933 @default.
- W2952045193 cites W2140636175 @default.
- W2952045193 cites W2142939943 @default.
- W2952045193 cites W2143296882 @default.
- W2952045193 cites W2143525060 @default.
- W2952045193 cites W2144881411 @default.
- W2952045193 cites W2145413250 @default.
- W2952045193 cites W2146750654 @default.
- W2952045193 cites W2165794527 @default.
- W2952045193 cites W2171063837 @default.
- W2952045193 cites W2172063876 @default.
- W2952045193 cites W2214925434 @default.
- W2952045193 cites W2317094190 @default.
- W2952045193 cites W2337926544 @default.
- W2952045193 cites W2417374815 @default.
- W2952045193 cites W2525060195 @default.
- W2952045193 cites W2575596330 @default.
- W2952045193 cites W2607990087 @default.
- W2952045193 cites W2739505165 @default.
- W2952045193 cites W2751044936 @default.
- W2952045193 cites W2753688795 @default.
- W2952045193 cites W2757168163 @default.
- W2952045193 cites W2785348225 @default.
- W2952045193 cites W2793806469 @default.
- W2952045193 cites W2794363085 @default.
- W2952045193 cites W2803016332 @default.
- W2952045193 cites W2901605078 @default.
- W2952045193 cites W2904128188 @default.
- W2952045193 doi "https://doi.org/10.1016/j.rse.2019.111238" @default.
- W2952045193 hasPublicationYear "2019" @default.
- W2952045193 type Work @default.
- W2952045193 sameAs 2952045193 @default.
- W2952045193 citedByCount "38" @default.
- W2952045193 countsByYear W29520451932019 @default.
- W2952045193 countsByYear W29520451932020 @default.
- W2952045193 countsByYear W29520451932021 @default.
- W2952045193 countsByYear W29520451932022 @default.
- W2952045193 countsByYear W29520451932023 @default.
- W2952045193 crossrefType "journal-article" @default.
- W2952045193 hasAuthorship W2952045193A5011456727 @default.
- W2952045193 hasAuthorship W2952045193A5033020599 @default.
- W2952045193 hasAuthorship W2952045193A5041666616 @default.
- W2952045193 hasAuthorship W2952045193A5045067652 @default.
- W2952045193 hasBestOaLocation W29520451931 @default.
- W2952045193 hasConcept C110121322 @default.
- W2952045193 hasConcept C113174947 @default.
- W2952045193 hasConcept C134306372 @default.
- W2952045193 hasConcept C205649164 @default.
- W2952045193 hasConcept C33923547 @default.
- W2952045193 hasConcept C39432304 @default.
- W2952045193 hasConcept C41008148 @default.