Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952056515> ?p ?o ?g. }
- W2952056515 endingPage "838" @default.
- W2952056515 startingPage "830" @default.
- W2952056515 abstract "Kinetic models contain unknown parameters that are estimated by optimizing the fit to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these issues, it is difficult to choose the best one for a given problem a priori. A systematic comparison of parameter estimation methods for problems with tens to hundreds of optimization variables is currently missing, and smaller studies provided contradictory findings.We use a collection of benchmarks to evaluate the performance of two families of optimization methods: (i) multi-starts of deterministic local searches and (ii) stochastic global optimization metaheuristics; the latter may be combined with deterministic local searches, leading to hybrid methods. A fair comparison is ensured through a collaborative evaluation and a consideration of multiple performance metrics. We discuss possible evaluation criteria to assess the trade-off between computational efficiency and robustness. Our results show that, thanks to recent advances in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The best performer combines a global scatter search metaheuristic with an interior point local method, provided with gradients estimated with adjoint-based sensitivities. We provide an implementation of this method to render it available to the scientific community.The code to reproduce the results is provided as Supplementary Material and is available at Zenodo https://doi.org/10.5281/zenodo.1304034.Supplementary data are available at Bioinformatics online." @default.
- W2952056515 created "2019-06-27" @default.
- W2952056515 creator A5003197068 @default.
- W2952056515 creator A5014811978 @default.
- W2952056515 creator A5032919554 @default.
- W2952056515 creator A5063254041 @default.
- W2952056515 creator A5090264675 @default.
- W2952056515 date "2018-08-23" @default.
- W2952056515 modified "2023-10-12" @default.
- W2952056515 title "Benchmarking optimization methods for parameter estimation in large kinetic models" @default.
- W2952056515 cites W1509329028 @default.
- W2952056515 cites W1582366873 @default.
- W2952056515 cites W1600765471 @default.
- W2952056515 cites W181733065 @default.
- W2952056515 cites W1847315806 @default.
- W2952056515 cites W1922871238 @default.
- W2952056515 cites W1982258483 @default.
- W2952056515 cites W2004322850 @default.
- W2952056515 cites W2006565216 @default.
- W2952056515 cites W2007591867 @default.
- W2952056515 cites W2012985604 @default.
- W2952056515 cites W2019133950 @default.
- W2952056515 cites W2019264851 @default.
- W2952056515 cites W2020425795 @default.
- W2952056515 cites W2023106695 @default.
- W2952056515 cites W2033783472 @default.
- W2952056515 cites W2040571528 @default.
- W2952056515 cites W2046915036 @default.
- W2952056515 cites W2053339983 @default.
- W2952056515 cites W2057830724 @default.
- W2952056515 cites W2081781433 @default.
- W2952056515 cites W2086988962 @default.
- W2952056515 cites W2087752119 @default.
- W2952056515 cites W2090517830 @default.
- W2952056515 cites W2096595244 @default.
- W2952056515 cites W2102434872 @default.
- W2952056515 cites W2103641729 @default.
- W2952056515 cites W2103838923 @default.
- W2952056515 cites W2109320913 @default.
- W2952056515 cites W2109571753 @default.
- W2952056515 cites W2111652881 @default.
- W2952056515 cites W2111807512 @default.
- W2952056515 cites W2113105229 @default.
- W2952056515 cites W2127808973 @default.
- W2952056515 cites W2133068979 @default.
- W2952056515 cites W2145633829 @default.
- W2952056515 cites W2149454052 @default.
- W2952056515 cites W2151554678 @default.
- W2952056515 cites W2152195021 @default.
- W2952056515 cites W2154904851 @default.
- W2952056515 cites W2156995638 @default.
- W2952056515 cites W2165603655 @default.
- W2952056515 cites W2166751342 @default.
- W2952056515 cites W2167900930 @default.
- W2952056515 cites W2179083909 @default.
- W2952056515 cites W2316766276 @default.
- W2952056515 cites W2389037713 @default.
- W2952056515 cites W2570913259 @default.
- W2952056515 cites W2571863445 @default.
- W2952056515 cites W2741052609 @default.
- W2952056515 cites W2742111569 @default.
- W2952056515 cites W2762440986 @default.
- W2952056515 cites W2772955743 @default.
- W2952056515 cites W2949499968 @default.
- W2952056515 cites W4293775970 @default.
- W2952056515 doi "https://doi.org/10.1093/bioinformatics/bty736" @default.
- W2952056515 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6394396" @default.
- W2952056515 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30816929" @default.
- W2952056515 hasPublicationYear "2018" @default.
- W2952056515 type Work @default.
- W2952056515 sameAs 2952056515 @default.
- W2952056515 citedByCount "86" @default.
- W2952056515 countsByYear W29520565152019 @default.
- W2952056515 countsByYear W29520565152020 @default.
- W2952056515 countsByYear W29520565152021 @default.
- W2952056515 countsByYear W29520565152022 @default.
- W2952056515 countsByYear W29520565152023 @default.
- W2952056515 crossrefType "journal-article" @default.
- W2952056515 hasAuthorship W2952056515A5003197068 @default.
- W2952056515 hasAuthorship W2952056515A5014811978 @default.
- W2952056515 hasAuthorship W2952056515A5032919554 @default.
- W2952056515 hasAuthorship W2952056515A5063254041 @default.
- W2952056515 hasAuthorship W2952056515A5090264675 @default.
- W2952056515 hasBestOaLocation W29520565151 @default.
- W2952056515 hasConcept C104317684 @default.
- W2952056515 hasConcept C105795698 @default.
- W2952056515 hasConcept C109718341 @default.
- W2952056515 hasConcept C111472728 @default.
- W2952056515 hasConcept C11413529 @default.
- W2952056515 hasConcept C117251300 @default.
- W2952056515 hasConcept C119857082 @default.
- W2952056515 hasConcept C126255220 @default.
- W2952056515 hasConcept C135320971 @default.
- W2952056515 hasConcept C138885662 @default.
- W2952056515 hasConcept C141934464 @default.
- W2952056515 hasConcept C144133560 @default.
- W2952056515 hasConcept C162853370 @default.
- W2952056515 hasConcept C185592680 @default.