Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952080353> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2952080353 abstract "Let $G$ be a complex, linear algebraic group acting on an algebraic space $X$. The purpose of this paper is to prove a Riemann-Roch theorem (Theorem 5.3) which gives a description of the completion of the equivariant Grothendieck group $G_0(G,X)$ at any maximal ideal of the representation ring $R(G) otimes C$ in terms of equivariant cycles. The main new technique for proving this theorem is our non-abelian completion theorem (Theorem 4.3) for equivariant $K$-theory. Theorem 4.3 generalizes the classical localization theorems for diagonalizable group actions to arbitrary groups." @default.
- W2952080353 created "2019-06-27" @default.
- W2952080353 creator A5062899326 @default.
- W2952080353 creator A5070115156 @default.
- W2952080353 date "2007-02-22" @default.
- W2952080353 modified "2023-09-26" @default.
- W2952080353 title "Algebraic cycles and completions of equivariant K-theory" @default.
- W2952080353 cites W1506425503 @default.
- W2952080353 cites W1515679419 @default.
- W2952080353 cites W1564278681 @default.
- W2952080353 cites W1974849843 @default.
- W2952080353 cites W1983894121 @default.
- W2952080353 cites W2088349898 @default.
- W2952080353 cites W2089521132 @default.
- W2952080353 doi "https://doi.org/10.48550/arxiv.math/0702671" @default.
- W2952080353 hasPublicationYear "2007" @default.
- W2952080353 type Work @default.
- W2952080353 sameAs 2952080353 @default.
- W2952080353 citedByCount "0" @default.
- W2952080353 crossrefType "posted-content" @default.
- W2952080353 hasAuthorship W2952080353A5062899326 @default.
- W2952080353 hasAuthorship W2952080353A5070115156 @default.
- W2952080353 hasBestOaLocation W29520803531 @default.
- W2952080353 hasConcept C118615104 @default.
- W2952080353 hasConcept C134306372 @default.
- W2952080353 hasConcept C136119220 @default.
- W2952080353 hasConcept C136170076 @default.
- W2952080353 hasConcept C171036898 @default.
- W2952080353 hasConcept C178790620 @default.
- W2952080353 hasConcept C185592680 @default.
- W2952080353 hasConcept C202444582 @default.
- W2952080353 hasConcept C2776756444 @default.
- W2952080353 hasConcept C2780378348 @default.
- W2952080353 hasConcept C2781311116 @default.
- W2952080353 hasConcept C33923547 @default.
- W2952080353 hasConcept C52690540 @default.
- W2952080353 hasConcept C9376300 @default.
- W2952080353 hasConceptScore W2952080353C118615104 @default.
- W2952080353 hasConceptScore W2952080353C134306372 @default.
- W2952080353 hasConceptScore W2952080353C136119220 @default.
- W2952080353 hasConceptScore W2952080353C136170076 @default.
- W2952080353 hasConceptScore W2952080353C171036898 @default.
- W2952080353 hasConceptScore W2952080353C178790620 @default.
- W2952080353 hasConceptScore W2952080353C185592680 @default.
- W2952080353 hasConceptScore W2952080353C202444582 @default.
- W2952080353 hasConceptScore W2952080353C2776756444 @default.
- W2952080353 hasConceptScore W2952080353C2780378348 @default.
- W2952080353 hasConceptScore W2952080353C2781311116 @default.
- W2952080353 hasConceptScore W2952080353C33923547 @default.
- W2952080353 hasConceptScore W2952080353C52690540 @default.
- W2952080353 hasConceptScore W2952080353C9376300 @default.
- W2952080353 hasLocation W29520803531 @default.
- W2952080353 hasLocation W29520803532 @default.
- W2952080353 hasOpenAccess W2952080353 @default.
- W2952080353 hasPrimaryLocation W29520803531 @default.
- W2952080353 hasRelatedWork W1556555945 @default.
- W2952080353 hasRelatedWork W1973053978 @default.
- W2952080353 hasRelatedWork W1973135594 @default.
- W2952080353 hasRelatedWork W2117666768 @default.
- W2952080353 hasRelatedWork W2219502640 @default.
- W2952080353 hasRelatedWork W2313823804 @default.
- W2952080353 hasRelatedWork W2323585122 @default.
- W2952080353 hasRelatedWork W2768723028 @default.
- W2952080353 hasRelatedWork W2790912835 @default.
- W2952080353 hasRelatedWork W2963614342 @default.
- W2952080353 isParatext "false" @default.
- W2952080353 isRetracted "false" @default.
- W2952080353 magId "2952080353" @default.
- W2952080353 workType "article" @default.