Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952146805> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2952146805 endingPage "188" @default.
- W2952146805 startingPage "181" @default.
- W2952146805 abstract "The goal of this effort is to diagnose fault on steel structures by using non destructive techniques. Ultrasonic techniques are usually applied in engineering for faults determination, thickness measuring, adhesive layers, and in metallurgy to establish the quality of welds in metallic pieces. But the ultrasonic techniques could be difficult or impossible to apply in structures with reduced space, i.e. car frameworks. Acoustic signals have been employed since ancient times for detecting faults. Striking an object produces a sound whose differences may be heard when the object is damaged, therefore the vibration signals can be applied to detect differences into a metallic structure. Moreover, the Frequency Response Function (FRF) is used in this work to detect damages in metallic structures. The FRFs are used as input in an artificial intelligent system such as neural nets to detect damage. In general, non destructive evaluation is applied to detect and localize structure faults by using a signal with wavelength smaller than the detecting fault. The method requires analyzing the object in numerous small sections just only to detect the fault. Damages in metallic structures cause small changes in resonance. This work considers global non destructive tests focused only on the estimation of the integrity of the system. Therefore, the whole structure is analyzed to detect damage with only one measure. Traditional fault structure detection practices usually require testing in numerous small sections. The technique used in this research decreases the fault detection costs drastically. The number of FRF spectral lines used to input the neural net is a small fraction of the total frequency range. The designing of a practical implementation requires the usage of a simple method for damage detection, i.e. neural networks. A supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm is applied for testing goals. The net structure is a three-levels layer. The net has only one hidden layer and one output neuron that classifies the damage in the steel beams. The particular selection of the forty two spectral lines values results in forty two neurons as system inputs. After training on a small set of data, the neural network is able to identify the damaged beams with considerable accuracy. The network converges in average in less than twenty epochs. Focusing in the technological implementation, the artificial neural network obtains excellent results with few neurons." @default.
- W2952146805 created "2019-06-27" @default.
- W2952146805 creator A5030899094 @default.
- W2952146805 creator A5066651447 @default.
- W2952146805 date "2009-01-01" @default.
- W2952146805 modified "2023-09-24" @default.
- W2952146805 title "Fault Diagnosis on Steel Structures Using Arti cial Neural Networks" @default.
- W2952146805 hasPublicationYear "2009" @default.
- W2952146805 type Work @default.
- W2952146805 sameAs 2952146805 @default.
- W2952146805 citedByCount "0" @default.
- W2952146805 crossrefType "journal-article" @default.
- W2952146805 hasAuthorship W2952146805A5030899094 @default.
- W2952146805 hasAuthorship W2952146805A5066651447 @default.
- W2952146805 hasConcept C121332964 @default.
- W2952146805 hasConcept C126838900 @default.
- W2952146805 hasConcept C127313418 @default.
- W2952146805 hasConcept C127413603 @default.
- W2952146805 hasConcept C152745839 @default.
- W2952146805 hasConcept C154945302 @default.
- W2952146805 hasConcept C165205528 @default.
- W2952146805 hasConcept C172707124 @default.
- W2952146805 hasConcept C175551986 @default.
- W2952146805 hasConcept C198394728 @default.
- W2952146805 hasConcept C199360897 @default.
- W2952146805 hasConcept C24890656 @default.
- W2952146805 hasConcept C2779843651 @default.
- W2952146805 hasConcept C41008148 @default.
- W2952146805 hasConcept C50644808 @default.
- W2952146805 hasConcept C56529433 @default.
- W2952146805 hasConcept C71924100 @default.
- W2952146805 hasConcept C81288441 @default.
- W2952146805 hasConceptScore W2952146805C121332964 @default.
- W2952146805 hasConceptScore W2952146805C126838900 @default.
- W2952146805 hasConceptScore W2952146805C127313418 @default.
- W2952146805 hasConceptScore W2952146805C127413603 @default.
- W2952146805 hasConceptScore W2952146805C152745839 @default.
- W2952146805 hasConceptScore W2952146805C154945302 @default.
- W2952146805 hasConceptScore W2952146805C165205528 @default.
- W2952146805 hasConceptScore W2952146805C172707124 @default.
- W2952146805 hasConceptScore W2952146805C175551986 @default.
- W2952146805 hasConceptScore W2952146805C198394728 @default.
- W2952146805 hasConceptScore W2952146805C199360897 @default.
- W2952146805 hasConceptScore W2952146805C24890656 @default.
- W2952146805 hasConceptScore W2952146805C2779843651 @default.
- W2952146805 hasConceptScore W2952146805C41008148 @default.
- W2952146805 hasConceptScore W2952146805C50644808 @default.
- W2952146805 hasConceptScore W2952146805C56529433 @default.
- W2952146805 hasConceptScore W2952146805C71924100 @default.
- W2952146805 hasConceptScore W2952146805C81288441 @default.
- W2952146805 hasIssue "3" @default.
- W2952146805 hasLocation W29521468051 @default.
- W2952146805 hasOpenAccess W2952146805 @default.
- W2952146805 hasPrimaryLocation W29521468051 @default.
- W2952146805 hasRelatedWork W157509158 @default.
- W2952146805 hasRelatedWork W195868816 @default.
- W2952146805 hasRelatedWork W1966836216 @default.
- W2952146805 hasRelatedWork W1990196040 @default.
- W2952146805 hasRelatedWork W2019464769 @default.
- W2952146805 hasRelatedWork W2026972525 @default.
- W2952146805 hasRelatedWork W2051267172 @default.
- W2952146805 hasRelatedWork W2063985006 @default.
- W2952146805 hasRelatedWork W2076914374 @default.
- W2952146805 hasRelatedWork W2086410990 @default.
- W2952146805 hasRelatedWork W2108951811 @default.
- W2952146805 hasRelatedWork W2164322631 @default.
- W2952146805 hasRelatedWork W2581861268 @default.
- W2952146805 hasRelatedWork W2725121322 @default.
- W2952146805 hasRelatedWork W2883486562 @default.
- W2952146805 hasRelatedWork W2984156874 @default.
- W2952146805 hasRelatedWork W3083786792 @default.
- W2952146805 hasRelatedWork W3131671510 @default.
- W2952146805 hasRelatedWork W40741351 @default.
- W2952146805 hasRelatedWork W2255889009 @default.
- W2952146805 hasVolume "28" @default.
- W2952146805 isParatext "false" @default.
- W2952146805 isRetracted "false" @default.
- W2952146805 magId "2952146805" @default.
- W2952146805 workType "article" @default.