Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952153265> ?p ?o ?g. }
- W2952153265 endingPage "43" @default.
- W2952153265 startingPage "32" @default.
- W2952153265 abstract "Influx evidences show that red long non-coding RNAs (lncRNAs) play important roles in various critical biological processes, and they afffect the development and progression of various human diseases. Therefore, it is necessary to precisely identify the lncRNA-disease associations. The identification precision can be improved by developing data integrative models. However, current models mainly need to project heterogeneous data onto the homologous networks, and then merge these networks into a composite one for integrative prediction. We recognize that this projection overrides the individual structure of the heterogeneous data, and the combination is impacted by noisy networks. As a result, the performance is compromised. Given that, we introduce a weighted matrix factorization model on multi-relational data to predict LncRNA-disease associations (WMFLDA). WMFLDA firstly uses a heterogeneous network to capture the inter(intra)-associations between different types of nodes (including genes, lncRNAs, and Disease Ontology terms). Then, it presets weights to these inter-association and intra-association matrices of the network, and cooperatively decomposes these matrices into low-rank ones to explore the underlying relationships between nodes. Next, it jointly optimizes the low-rank matrices and the weights. After that, WMFLDA approximates the lncRNA-disease association matrix using the optimized matrices and weights, and thus to achieve the prediction. WMFLDA obtains a much better performance than related data integrative solutions across different experiment settings and evaluation metrics. It can not only respect the intrinsic structures of individual data sources, but can also fuse them with selection." @default.
- W2952153265 created "2019-06-27" @default.
- W2952153265 creator A5026859518 @default.
- W2952153265 creator A5027082940 @default.
- W2952153265 creator A5042241049 @default.
- W2952153265 creator A5079800756 @default.
- W2952153265 creator A5086452435 @default.
- W2952153265 creator A5090148962 @default.
- W2952153265 date "2020-02-01" @default.
- W2952153265 modified "2023-10-18" @default.
- W2952153265 title "Weighted matrix factorization on multi-relational data for LncRNA-disease association prediction" @default.
- W2952153265 cites W1897770946 @default.
- W2952153265 cites W1934134463 @default.
- W2952153265 cites W1999008082 @default.
- W2952153265 cites W1999746344 @default.
- W2952153265 cites W2000875411 @default.
- W2952153265 cites W2001004762 @default.
- W2952153265 cites W2002185065 @default.
- W2952153265 cites W2008365039 @default.
- W2952153265 cites W2016106370 @default.
- W2952153265 cites W2017675395 @default.
- W2952153265 cites W2018518196 @default.
- W2952153265 cites W2020191404 @default.
- W2952153265 cites W2024329298 @default.
- W2952153265 cites W2044453906 @default.
- W2952153265 cites W2045156863 @default.
- W2952153265 cites W2055027431 @default.
- W2952153265 cites W2073278656 @default.
- W2952153265 cites W2087828287 @default.
- W2952153265 cites W2091130596 @default.
- W2952153265 cites W2091161969 @default.
- W2952153265 cites W2095867585 @default.
- W2952153265 cites W2096465161 @default.
- W2952153265 cites W2103017472 @default.
- W2952153265 cites W2113868616 @default.
- W2952153265 cites W2117446654 @default.
- W2952153265 cites W2117977572 @default.
- W2952153265 cites W2124050695 @default.
- W2952153265 cites W2126504590 @default.
- W2952153265 cites W2128983843 @default.
- W2952153265 cites W2130547542 @default.
- W2952153265 cites W2130687290 @default.
- W2952153265 cites W2140141449 @default.
- W2952153265 cites W2144137532 @default.
- W2952153265 cites W2146573461 @default.
- W2952153265 cites W2146648170 @default.
- W2952153265 cites W2152970345 @default.
- W2952153265 cites W2158135353 @default.
- W2952153265 cites W2159092541 @default.
- W2952153265 cites W2160333540 @default.
- W2952153265 cites W2163485494 @default.
- W2952153265 cites W2165253681 @default.
- W2952153265 cites W2223119478 @default.
- W2952153265 cites W2320656788 @default.
- W2952153265 cites W2345181615 @default.
- W2952153265 cites W2408796111 @default.
- W2952153265 cites W2410545331 @default.
- W2952153265 cites W2512308096 @default.
- W2952153265 cites W2538034742 @default.
- W2952153265 cites W2570589864 @default.
- W2952153265 cites W2571471366 @default.
- W2952153265 cites W2739280501 @default.
- W2952153265 cites W2741717578 @default.
- W2952153265 cites W2772618228 @default.
- W2952153265 cites W2782571367 @default.
- W2952153265 cites W2801501532 @default.
- W2952153265 cites W2803413127 @default.
- W2952153265 cites W2902087014 @default.
- W2952153265 cites W644786505 @default.
- W2952153265 doi "https://doi.org/10.1016/j.ymeth.2019.06.015" @default.
- W2952153265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31226302" @default.
- W2952153265 hasPublicationYear "2020" @default.
- W2952153265 type Work @default.
- W2952153265 sameAs 2952153265 @default.
- W2952153265 citedByCount "31" @default.
- W2952153265 countsByYear W29521532652020 @default.
- W2952153265 countsByYear W29521532652021 @default.
- W2952153265 countsByYear W29521532652022 @default.
- W2952153265 countsByYear W29521532652023 @default.
- W2952153265 crossrefType "journal-article" @default.
- W2952153265 hasAuthorship W2952153265A5026859518 @default.
- W2952153265 hasAuthorship W2952153265A5027082940 @default.
- W2952153265 hasAuthorship W2952153265A5042241049 @default.
- W2952153265 hasAuthorship W2952153265A5079800756 @default.
- W2952153265 hasAuthorship W2952153265A5086452435 @default.
- W2952153265 hasAuthorship W2952153265A5090148962 @default.
- W2952153265 hasConcept C108037233 @default.
- W2952153265 hasConcept C11413529 @default.
- W2952153265 hasConcept C121332964 @default.
- W2952153265 hasConcept C124101348 @default.
- W2952153265 hasConcept C158207573 @default.
- W2952153265 hasConcept C158693339 @default.
- W2952153265 hasConcept C197129107 @default.
- W2952153265 hasConcept C23123220 @default.
- W2952153265 hasConcept C41008148 @default.
- W2952153265 hasConcept C42355184 @default.
- W2952153265 hasConcept C555944384 @default.
- W2952153265 hasConcept C62520636 @default.