Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952155575> ?p ?o ?g. }
- W2952155575 endingPage "678" @default.
- W2952155575 startingPage "658" @default.
- W2952155575 abstract "Microscopic (pore-scale) properties of porous media affect and often determine their macroscopic (continuum- or Darcy-scale) counterparts. Understanding the relationship between processes on these two scales is essential to both the derivation of macroscopic models of, e.g., transport phenomena in natural porous media, and the design of novel materials, e.g., for energy storage. Microscopic properties exhibit complex statistical correlations and geometric constraints that present challenges for the estimation of macroscopic quantities of interest (QoIs), e.g., in the context of global sensitivity analysis (GSA) of macroscopic QoIs with respect to microscopic material properties. We present a systematic way of building correlations into stochastic multiscale models through Bayesian Networks. The proposed framework allows us to construct the joint probability density function (PDF) of model parameters through causal relationships that are informed by domain knowledge and emulate engineering processes, e.g., the design of hierarchical nanoporous materials. These PDFs also serve as input for the forward propagation of parametric uncertainty thereby yielding a Bayesian Network PDE. To assess the impact of causal relationships and microscale correlations on macroscopic material properties, we propose a moment-independent GSA and corresponding effect rankings for Bayesian Network PDEs, based on the differential Mutual Information, that leverage the structure of Bayesian Networks and account for both correlated inputs and complex non-Gaussian (skewed, multimodal) QoIs. Our findings from numerical experiments, which feature a non-intrusive uncertainty quantification workflow, indicate two practical outcomes. First, the inclusion of correlations through structured priors based on causal relationships informed by domain knowledge impacts predictions of QoIs and has important implications for engineering design. Second, structured priors with non-trivial correlations yield different effect rankings than independent priors; these rankings are more consistent with the anticipated physics. • Causality due to microscopic geometrical constraints yield correlations among pore-scale parameters. • Probabilistic graphical models incorporate causal relationships and correlations into random multiscale models. • Mutual information global sensitivity indices for Bayesian network PDE yield consistent parameter rankings." @default.
- W2952155575 created "2019-06-27" @default.
- W2952155575 creator A5007235196 @default.
- W2952155575 creator A5045079747 @default.
- W2952155575 creator A5049066010 @default.
- W2952155575 creator A5078317424 @default.
- W2952155575 date "2019-10-01" @default.
- W2952155575 modified "2023-10-13" @default.
- W2952155575 title "Causality and Bayesian Network PDEs for multiscale representations of porous media" @default.
- W2952155575 cites W1976068406 @default.
- W2952155575 cites W1981618598 @default.
- W2952155575 cites W1994080277 @default.
- W2952155575 cites W1995565517 @default.
- W2952155575 cites W2009804339 @default.
- W2952155575 cites W2011292888 @default.
- W2952155575 cites W2014017759 @default.
- W2952155575 cites W2026645785 @default.
- W2952155575 cites W2027609036 @default.
- W2952155575 cites W2031724906 @default.
- W2952155575 cites W2034972421 @default.
- W2952155575 cites W2044582942 @default.
- W2952155575 cites W2079960826 @default.
- W2952155575 cites W2092939357 @default.
- W2952155575 cites W2101985079 @default.
- W2952155575 cites W2102300987 @default.
- W2952155575 cites W2104930019 @default.
- W2952155575 cites W2114771311 @default.
- W2952155575 cites W2131940723 @default.
- W2952155575 cites W2141771360 @default.
- W2952155575 cites W2156541178 @default.
- W2952155575 cites W2170468508 @default.
- W2952155575 cites W2478542826 @default.
- W2952155575 cites W2750261997 @default.
- W2952155575 cites W2765375711 @default.
- W2952155575 cites W2788182189 @default.
- W2952155575 cites W2964076844 @default.
- W2952155575 cites W3101380508 @default.
- W2952155575 cites W3104712395 @default.
- W2952155575 cites W1023661872 @default.
- W2952155575 doi "https://doi.org/10.1016/j.jcp.2019.06.007" @default.
- W2952155575 hasPublicationYear "2019" @default.
- W2952155575 type Work @default.
- W2952155575 sameAs 2952155575 @default.
- W2952155575 citedByCount "13" @default.
- W2952155575 countsByYear W29521555752019 @default.
- W2952155575 countsByYear W29521555752020 @default.
- W2952155575 countsByYear W29521555752021 @default.
- W2952155575 countsByYear W29521555752022 @default.
- W2952155575 countsByYear W29521555752023 @default.
- W2952155575 crossrefType "journal-article" @default.
- W2952155575 hasAuthorship W2952155575A5007235196 @default.
- W2952155575 hasAuthorship W2952155575A5045079747 @default.
- W2952155575 hasAuthorship W2952155575A5049066010 @default.
- W2952155575 hasAuthorship W2952155575A5078317424 @default.
- W2952155575 hasBestOaLocation W29521555751 @default.
- W2952155575 hasConcept C105569014 @default.
- W2952155575 hasConcept C105795698 @default.
- W2952155575 hasConcept C117251300 @default.
- W2952155575 hasConcept C120665830 @default.
- W2952155575 hasConcept C121332964 @default.
- W2952155575 hasConcept C121864883 @default.
- W2952155575 hasConcept C151730666 @default.
- W2952155575 hasConcept C154945302 @default.
- W2952155575 hasConcept C159985019 @default.
- W2952155575 hasConcept C17744445 @default.
- W2952155575 hasConcept C192562407 @default.
- W2952155575 hasConcept C199539241 @default.
- W2952155575 hasConcept C2776359362 @default.
- W2952155575 hasConcept C2779343474 @default.
- W2952155575 hasConcept C33923547 @default.
- W2952155575 hasConcept C41008148 @default.
- W2952155575 hasConcept C49937458 @default.
- W2952155575 hasConcept C62520636 @default.
- W2952155575 hasConcept C64357122 @default.
- W2952155575 hasConcept C6648577 @default.
- W2952155575 hasConcept C79708238 @default.
- W2952155575 hasConcept C86803240 @default.
- W2952155575 hasConcept C94625758 @default.
- W2952155575 hasConceptScore W2952155575C105569014 @default.
- W2952155575 hasConceptScore W2952155575C105795698 @default.
- W2952155575 hasConceptScore W2952155575C117251300 @default.
- W2952155575 hasConceptScore W2952155575C120665830 @default.
- W2952155575 hasConceptScore W2952155575C121332964 @default.
- W2952155575 hasConceptScore W2952155575C121864883 @default.
- W2952155575 hasConceptScore W2952155575C151730666 @default.
- W2952155575 hasConceptScore W2952155575C154945302 @default.
- W2952155575 hasConceptScore W2952155575C159985019 @default.
- W2952155575 hasConceptScore W2952155575C17744445 @default.
- W2952155575 hasConceptScore W2952155575C192562407 @default.
- W2952155575 hasConceptScore W2952155575C199539241 @default.
- W2952155575 hasConceptScore W2952155575C2776359362 @default.
- W2952155575 hasConceptScore W2952155575C2779343474 @default.
- W2952155575 hasConceptScore W2952155575C33923547 @default.
- W2952155575 hasConceptScore W2952155575C41008148 @default.
- W2952155575 hasConceptScore W2952155575C49937458 @default.
- W2952155575 hasConceptScore W2952155575C62520636 @default.
- W2952155575 hasConceptScore W2952155575C64357122 @default.
- W2952155575 hasConceptScore W2952155575C6648577 @default.