Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952162556> ?p ?o ?g. }
- W2952162556 endingPage "872" @default.
- W2952162556 startingPage "872" @default.
- W2952162556 abstract "Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine." @default.
- W2952162556 created "2019-06-27" @default.
- W2952162556 creator A5016491389 @default.
- W2952162556 creator A5026587624 @default.
- W2952162556 creator A5049608028 @default.
- W2952162556 creator A5072253597 @default.
- W2952162556 creator A5090575843 @default.
- W2952162556 date "2019-06-18" @default.
- W2952162556 modified "2023-10-15" @default.
- W2952162556 title "Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies" @default.
- W2952162556 cites W1861245624 @default.
- W2952162556 cites W1982390886 @default.
- W2952162556 cites W2019565377 @default.
- W2952162556 cites W2026049502 @default.
- W2952162556 cites W2035943384 @default.
- W2952162556 cites W2037201628 @default.
- W2952162556 cites W2041230595 @default.
- W2952162556 cites W2048301902 @default.
- W2952162556 cites W2061891677 @default.
- W2952162556 cites W2087806323 @default.
- W2952162556 cites W2115278098 @default.
- W2952162556 cites W2159764117 @default.
- W2952162556 cites W2217378748 @default.
- W2952162556 cites W2258939777 @default.
- W2952162556 cites W2268996142 @default.
- W2952162556 cites W2317136217 @default.
- W2952162556 cites W2461701740 @default.
- W2952162556 cites W2494578815 @default.
- W2952162556 cites W2523226651 @default.
- W2952162556 cites W2554093589 @default.
- W2952162556 cites W2557738935 @default.
- W2952162556 cites W2581082771 @default.
- W2952162556 cites W2590495894 @default.
- W2952162556 cites W2597124360 @default.
- W2952162556 cites W2598442119 @default.
- W2952162556 cites W2608231518 @default.
- W2952162556 cites W2750146565 @default.
- W2952162556 cites W2758333670 @default.
- W2952162556 cites W2772246530 @default.
- W2952162556 cites W2788633781 @default.
- W2952162556 cites W2799723178 @default.
- W2952162556 cites W2801088543 @default.
- W2952162556 cites W2888424632 @default.
- W2952162556 cites W2889366442 @default.
- W2952162556 cites W2898934708 @default.
- W2952162556 doi "https://doi.org/10.3390/jcm8060872" @default.
- W2952162556 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6617139" @default.
- W2952162556 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31216768" @default.
- W2952162556 hasPublicationYear "2019" @default.
- W2952162556 type Work @default.
- W2952162556 sameAs 2952162556 @default.
- W2952162556 citedByCount "46" @default.
- W2952162556 countsByYear W29521625562019 @default.
- W2952162556 countsByYear W29521625562020 @default.
- W2952162556 countsByYear W29521625562021 @default.
- W2952162556 countsByYear W29521625562022 @default.
- W2952162556 countsByYear W29521625562023 @default.
- W2952162556 crossrefType "journal-article" @default.
- W2952162556 hasAuthorship W2952162556A5016491389 @default.
- W2952162556 hasAuthorship W2952162556A5026587624 @default.
- W2952162556 hasAuthorship W2952162556A5049608028 @default.
- W2952162556 hasAuthorship W2952162556A5072253597 @default.
- W2952162556 hasAuthorship W2952162556A5090575843 @default.
- W2952162556 hasBestOaLocation W29521625561 @default.
- W2952162556 hasConcept C118487528 @default.
- W2952162556 hasConcept C119857082 @default.
- W2952162556 hasConcept C12267149 @default.
- W2952162556 hasConcept C123860398 @default.
- W2952162556 hasConcept C134018914 @default.
- W2952162556 hasConcept C142724271 @default.
- W2952162556 hasConcept C153180895 @default.
- W2952162556 hasConcept C154945302 @default.
- W2952162556 hasConcept C2778818243 @default.
- W2952162556 hasConcept C2779829184 @default.
- W2952162556 hasConcept C41008148 @default.
- W2952162556 hasConcept C555293320 @default.
- W2952162556 hasConcept C71924100 @default.
- W2952162556 hasConcept C95623464 @default.
- W2952162556 hasConceptScore W2952162556C118487528 @default.
- W2952162556 hasConceptScore W2952162556C119857082 @default.
- W2952162556 hasConceptScore W2952162556C12267149 @default.
- W2952162556 hasConceptScore W2952162556C123860398 @default.
- W2952162556 hasConceptScore W2952162556C134018914 @default.
- W2952162556 hasConceptScore W2952162556C142724271 @default.
- W2952162556 hasConceptScore W2952162556C153180895 @default.
- W2952162556 hasConceptScore W2952162556C154945302 @default.
- W2952162556 hasConceptScore W2952162556C2778818243 @default.
- W2952162556 hasConceptScore W2952162556C2779829184 @default.
- W2952162556 hasConceptScore W2952162556C41008148 @default.
- W2952162556 hasConceptScore W2952162556C555293320 @default.
- W2952162556 hasConceptScore W2952162556C71924100 @default.
- W2952162556 hasConceptScore W2952162556C95623464 @default.
- W2952162556 hasFunder F4320337350 @default.
- W2952162556 hasIssue "6" @default.
- W2952162556 hasLocation W29521625561 @default.
- W2952162556 hasLocation W29521625562 @default.
- W2952162556 hasLocation W29521625563 @default.
- W2952162556 hasLocation W29521625564 @default.