Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952172225> ?p ?o ?g. }
- W2952172225 endingPage "547" @default.
- W2952172225 startingPage "540" @default.
- W2952172225 abstract "We show that deep learning techniques can be applied successfully to fiber tractography. Specifically, we use feed-forward and recurrent neural networks to learn the generation process of streamlines directly from diffusion-weighted imaging (DWI) data. Furthermore, we empirically study the behavior of the proposed models on a realistic white matter phantom with known ground truth. We show that their performance is competitive to that of commonly used techniques, even when the models are used on DWI data unseen at training time. We also show that our models are able to recover high spatial coverage of the ground truth white matter pathways while better controlling the number of false connections. In fact, our experiments suggest that exploiting past information within a streamline’s trajectory during tracking helps predict the following direction." @default.
- W2952172225 created "2019-06-27" @default.
- W2952172225 creator A5019862529 @default.
- W2952172225 creator A5027292126 @default.
- W2952172225 creator A5032540574 @default.
- W2952172225 creator A5033409286 @default.
- W2952172225 creator A5045679867 @default.
- W2952172225 creator A5047664515 @default.
- W2952172225 creator A5081429343 @default.
- W2952172225 creator A5086949103 @default.
- W2952172225 date "2017-01-01" @default.
- W2952172225 modified "2023-09-30" @default.
- W2952172225 title "Learn to Track: Deep Learning for Tractography" @default.
- W2952172225 cites W1965894642 @default.
- W2952172225 cites W1969637629 @default.
- W2952172225 cites W2013160622 @default.
- W2952172225 cites W2020519533 @default.
- W2952172225 cites W2045498423 @default.
- W2952172225 cites W2062791478 @default.
- W2952172225 cites W2145132952 @default.
- W2952172225 cites W2149092213 @default.
- W2952172225 cites W2157331557 @default.
- W2952172225 cites W2176448989 @default.
- W2952172225 cites W2919115771 @default.
- W2952172225 doi "https://doi.org/10.1007/978-3-319-66182-7_62" @default.
- W2952172225 hasPublicationYear "2017" @default.
- W2952172225 type Work @default.
- W2952172225 sameAs 2952172225 @default.
- W2952172225 citedByCount "19" @default.
- W2952172225 countsByYear W29521722252018 @default.
- W2952172225 countsByYear W29521722252019 @default.
- W2952172225 countsByYear W29521722252020 @default.
- W2952172225 countsByYear W29521722252021 @default.
- W2952172225 countsByYear W29521722252022 @default.
- W2952172225 countsByYear W29521722252023 @default.
- W2952172225 crossrefType "book-chapter" @default.
- W2952172225 hasAuthorship W2952172225A5019862529 @default.
- W2952172225 hasAuthorship W2952172225A5027292126 @default.
- W2952172225 hasAuthorship W2952172225A5032540574 @default.
- W2952172225 hasAuthorship W2952172225A5033409286 @default.
- W2952172225 hasAuthorship W2952172225A5045679867 @default.
- W2952172225 hasAuthorship W2952172225A5047664515 @default.
- W2952172225 hasAuthorship W2952172225A5081429343 @default.
- W2952172225 hasAuthorship W2952172225A5086949103 @default.
- W2952172225 hasBestOaLocation W29521722254 @default.
- W2952172225 hasConcept C104293457 @default.
- W2952172225 hasConcept C108583219 @default.
- W2952172225 hasConcept C111919701 @default.
- W2952172225 hasConcept C119857082 @default.
- W2952172225 hasConcept C120665830 @default.
- W2952172225 hasConcept C121332964 @default.
- W2952172225 hasConcept C126838900 @default.
- W2952172225 hasConcept C1276947 @default.
- W2952172225 hasConcept C13662910 @default.
- W2952172225 hasConcept C143409427 @default.
- W2952172225 hasConcept C146849305 @default.
- W2952172225 hasConcept C149550507 @default.
- W2952172225 hasConcept C153180895 @default.
- W2952172225 hasConcept C154945302 @default.
- W2952172225 hasConcept C15744967 @default.
- W2952172225 hasConcept C19417346 @default.
- W2952172225 hasConcept C2775936607 @default.
- W2952172225 hasConcept C2984842247 @default.
- W2952172225 hasConcept C41008148 @default.
- W2952172225 hasConcept C50644808 @default.
- W2952172225 hasConcept C71924100 @default.
- W2952172225 hasConcept C84787856 @default.
- W2952172225 hasConcept C89992363 @default.
- W2952172225 hasConcept C98045186 @default.
- W2952172225 hasConceptScore W2952172225C104293457 @default.
- W2952172225 hasConceptScore W2952172225C108583219 @default.
- W2952172225 hasConceptScore W2952172225C111919701 @default.
- W2952172225 hasConceptScore W2952172225C119857082 @default.
- W2952172225 hasConceptScore W2952172225C120665830 @default.
- W2952172225 hasConceptScore W2952172225C121332964 @default.
- W2952172225 hasConceptScore W2952172225C126838900 @default.
- W2952172225 hasConceptScore W2952172225C1276947 @default.
- W2952172225 hasConceptScore W2952172225C13662910 @default.
- W2952172225 hasConceptScore W2952172225C143409427 @default.
- W2952172225 hasConceptScore W2952172225C146849305 @default.
- W2952172225 hasConceptScore W2952172225C149550507 @default.
- W2952172225 hasConceptScore W2952172225C153180895 @default.
- W2952172225 hasConceptScore W2952172225C154945302 @default.
- W2952172225 hasConceptScore W2952172225C15744967 @default.
- W2952172225 hasConceptScore W2952172225C19417346 @default.
- W2952172225 hasConceptScore W2952172225C2775936607 @default.
- W2952172225 hasConceptScore W2952172225C2984842247 @default.
- W2952172225 hasConceptScore W2952172225C41008148 @default.
- W2952172225 hasConceptScore W2952172225C50644808 @default.
- W2952172225 hasConceptScore W2952172225C71924100 @default.
- W2952172225 hasConceptScore W2952172225C84787856 @default.
- W2952172225 hasConceptScore W2952172225C89992363 @default.
- W2952172225 hasConceptScore W2952172225C98045186 @default.
- W2952172225 hasLocation W29521722251 @default.
- W2952172225 hasLocation W29521722252 @default.
- W2952172225 hasLocation W29521722253 @default.
- W2952172225 hasLocation W29521722254 @default.
- W2952172225 hasLocation W29521722255 @default.