Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952172339> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2952172339 abstract "The automation process for inferring users' interest groups is a challenge task in social networks research and it has applications in marketing and recommendation systems. Manually labeling of documents is a difficult and an expensive task, but it is essential for training an automatic text classifier. Actually, there are several approaches where the problem is treated as a multi-label prediction task. In this work, a methodology is proposed to automatically categorize data by considering Reddit and Twitter data. First, a dataset of 42.100 publications belongs to popular forums site Reddit is collected to train a model with labeled data. Then, a dataset of tweets, an average of 100 tweets per user, from 1573 profiles is collected to predict users' topics of interest with the trained model. Finally, we were able to automatically categorize data with an average precision of 75.62%." @default.
- W2952172339 created "2019-06-27" @default.
- W2952172339 creator A5066189430 @default.
- W2952172339 creator A5069784965 @default.
- W2952172339 date "2019-04-01" @default.
- W2952172339 modified "2023-09-26" @default.
- W2952172339 title "Using Reddit Data for Multi-Label Text Classification of Twitter Users Interests" @default.
- W2952172339 cites W1832693441 @default.
- W2952172339 cites W2089870669 @default.
- W2952172339 cites W2146241755 @default.
- W2952172339 cites W2158698691 @default.
- W2952172339 cites W2159032819 @default.
- W2952172339 cites W2493065434 @default.
- W2952172339 cites W2536345955 @default.
- W2952172339 doi "https://doi.org/10.1109/icedeg.2019.8734365" @default.
- W2952172339 hasPublicationYear "2019" @default.
- W2952172339 type Work @default.
- W2952172339 sameAs 2952172339 @default.
- W2952172339 citedByCount "7" @default.
- W2952172339 countsByYear W29521723392020 @default.
- W2952172339 countsByYear W29521723392021 @default.
- W2952172339 countsByYear W29521723392022 @default.
- W2952172339 crossrefType "proceedings-article" @default.
- W2952172339 hasAuthorship W2952172339A5066189430 @default.
- W2952172339 hasAuthorship W2952172339A5069784965 @default.
- W2952172339 hasConcept C136764020 @default.
- W2952172339 hasConcept C143275388 @default.
- W2952172339 hasConcept C23123220 @default.
- W2952172339 hasConcept C41008148 @default.
- W2952172339 hasConcept C518677369 @default.
- W2952172339 hasConceptScore W2952172339C136764020 @default.
- W2952172339 hasConceptScore W2952172339C143275388 @default.
- W2952172339 hasConceptScore W2952172339C23123220 @default.
- W2952172339 hasConceptScore W2952172339C41008148 @default.
- W2952172339 hasConceptScore W2952172339C518677369 @default.
- W2952172339 hasLocation W29521723391 @default.
- W2952172339 hasOpenAccess W2952172339 @default.
- W2952172339 hasPrimaryLocation W29521723391 @default.
- W2952172339 hasRelatedWork W1981629440 @default.
- W2952172339 hasRelatedWork W2003784512 @default.
- W2952172339 hasRelatedWork W2296285930 @default.
- W2952172339 hasRelatedWork W23831623 @default.
- W2952172339 hasRelatedWork W2508527832 @default.
- W2952172339 hasRelatedWork W2533808799 @default.
- W2952172339 hasRelatedWork W2748952813 @default.
- W2952172339 hasRelatedWork W2916307614 @default.
- W2952172339 hasRelatedWork W3143142082 @default.
- W2952172339 hasRelatedWork W120485128 @default.
- W2952172339 isParatext "false" @default.
- W2952172339 isRetracted "false" @default.
- W2952172339 magId "2952172339" @default.
- W2952172339 workType "article" @default.