Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952175320> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2952175320 abstract "Longitudinal analysis has great potential to reveal developmental trajectories and monitor disease progression in medical imaging. This process relies on consistent and robust joint 4D segmentation. Traditional techniques are dependent on the similarity of images over time and the use of subject-specific priors to reduce random variation and improve the robustness and sensitivity of the overall longitudinal analysis. This is however slow and computationally intensive as subject-specific templates need to be rebuilt every time. The focus of this work to accelerate this analysis with the use of deep learning. The proposed approach is based on deep CNNs and incorporates semantic segmentation and provides a longitudinal relationship for the same subject. The proposed approach is based on deep CNNs and incorporates semantic segmentation and provides a longitudinal relationship for the same subject. The state of art using 3D patches as inputs to modified Unet provides results around ${0.91 pm 0.5}$ Dice and using multi-view atlas in CNNs provide around the same results. In this work, different models are explored, each offers better accuracy and fast results while increasing the segmentation quality. These methods are evaluated on 135 scans from the EADC-ADNI Harmonized Hippocampus Protocol. Proposed CNN based segmentation approaches demonstrate how 2D segmentation using prior slices can provide similar results to 3D segmentation while maintaining good continuity in the 3D dimension and improved speed. Just using 2D modified sagittal slices provide us a better Dice and longitudinal analysis for a given subject. For the ADNI dataset, using the simple UNet CNN technique gives us ${0.84 pm 0.5}$ and while using modified CNN techniques on the same input yields ${0.89 pm 0.5}$. Rate of atrophy and RMS error are calculated for several test cases using various methods and analyzed." @default.
- W2952175320 created "2019-06-27" @default.
- W2952175320 creator A5040456565 @default.
- W2952175320 creator A5076980399 @default.
- W2952175320 date "2019-06-13" @default.
- W2952175320 modified "2023-10-06" @default.
- W2952175320 title "Enforcing temporal consistency in Deep Learning segmentation of brain MR images" @default.
- W2952175320 cites W1901129140 @default.
- W2952175320 cites W1976003345 @default.
- W2952175320 cites W2022178541 @default.
- W2952175320 cites W2153700064 @default.
- W2952175320 cites W2621028221 @default.
- W2952175320 cites W2798122215 @default.
- W2952175320 cites W2884436604 @default.
- W2952175320 cites W2912563188 @default.
- W2952175320 cites W2944730029 @default.
- W2952175320 hasPublicationYear "2019" @default.
- W2952175320 type Work @default.
- W2952175320 sameAs 2952175320 @default.
- W2952175320 citedByCount "0" @default.
- W2952175320 crossrefType "posted-content" @default.
- W2952175320 hasAuthorship W2952175320A5040456565 @default.
- W2952175320 hasAuthorship W2952175320A5076980399 @default.
- W2952175320 hasConcept C104317684 @default.
- W2952175320 hasConcept C108583219 @default.
- W2952175320 hasConcept C119857082 @default.
- W2952175320 hasConcept C153180895 @default.
- W2952175320 hasConcept C154945302 @default.
- W2952175320 hasConcept C185592680 @default.
- W2952175320 hasConcept C22029948 @default.
- W2952175320 hasConcept C2524010 @default.
- W2952175320 hasConcept C2776436953 @default.
- W2952175320 hasConcept C31972630 @default.
- W2952175320 hasConcept C33923547 @default.
- W2952175320 hasConcept C41008148 @default.
- W2952175320 hasConcept C55493867 @default.
- W2952175320 hasConcept C63479239 @default.
- W2952175320 hasConcept C89600930 @default.
- W2952175320 hasConceptScore W2952175320C104317684 @default.
- W2952175320 hasConceptScore W2952175320C108583219 @default.
- W2952175320 hasConceptScore W2952175320C119857082 @default.
- W2952175320 hasConceptScore W2952175320C153180895 @default.
- W2952175320 hasConceptScore W2952175320C154945302 @default.
- W2952175320 hasConceptScore W2952175320C185592680 @default.
- W2952175320 hasConceptScore W2952175320C22029948 @default.
- W2952175320 hasConceptScore W2952175320C2524010 @default.
- W2952175320 hasConceptScore W2952175320C2776436953 @default.
- W2952175320 hasConceptScore W2952175320C31972630 @default.
- W2952175320 hasConceptScore W2952175320C33923547 @default.
- W2952175320 hasConceptScore W2952175320C41008148 @default.
- W2952175320 hasConceptScore W2952175320C55493867 @default.
- W2952175320 hasConceptScore W2952175320C63479239 @default.
- W2952175320 hasConceptScore W2952175320C89600930 @default.
- W2952175320 hasLocation W29521753201 @default.
- W2952175320 hasOpenAccess W2952175320 @default.
- W2952175320 hasPrimaryLocation W29521753201 @default.
- W2952175320 hasRelatedWork W2186192426 @default.
- W2952175320 hasRelatedWork W2751148593 @default.
- W2952175320 hasRelatedWork W2760516000 @default.
- W2952175320 hasRelatedWork W2803522971 @default.
- W2952175320 hasRelatedWork W2912848025 @default.
- W2952175320 hasRelatedWork W2913844953 @default.
- W2952175320 hasRelatedWork W2950945448 @default.
- W2952175320 hasRelatedWork W2951830443 @default.
- W2952175320 hasRelatedWork W2965270294 @default.
- W2952175320 hasRelatedWork W2970975385 @default.
- W2952175320 hasRelatedWork W2976754495 @default.
- W2952175320 hasRelatedWork W3000524228 @default.
- W2952175320 hasRelatedWork W3033139251 @default.
- W2952175320 hasRelatedWork W3092060218 @default.
- W2952175320 hasRelatedWork W3097862283 @default.
- W2952175320 hasRelatedWork W3102150723 @default.
- W2952175320 hasRelatedWork W3114062792 @default.
- W2952175320 hasRelatedWork W3150580094 @default.
- W2952175320 hasRelatedWork W3176384940 @default.
- W2952175320 hasRelatedWork W989272091 @default.
- W2952175320 isParatext "false" @default.
- W2952175320 isRetracted "false" @default.
- W2952175320 magId "2952175320" @default.
- W2952175320 workType "article" @default.