Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952176080> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2952176080 abstract "Recursive Neural Networks are non-linear adaptive models that are able to learn deep structured information. However, these models have not yet been broadly accepted. This fact is mainly due to its inherent complexity. In particular, not only for being extremely complex information processing models, but also because of a computational expensive learning phase. The most popular training method for these models is back-propagation through the structure. This algorithm has been revealed not to be the most appropriate for structured processing due to problems of convergence, while more sophisticated training methods enhance the speed of convergence at the expense of increasing significantly the computational cost. In this paper, we firstly perform an analysis of the underlying principles behind these models aimed at understanding their computational power. Secondly, we propose an approximate second order stochastic learning algorithm. The proposed algorithm dynamically adapts the learning rate throughout the training phase of the network without incurring excessively expensive computational effort. The algorithm operates in both on-line and batch modes. Furthermore, the resulting learning scheme is robust against the vanishing gradients problem. The advantages of the proposed algorithm are demonstrated with a real-world application example." @default.
- W2952176080 created "2019-06-27" @default.
- W2952176080 creator A5085176089 @default.
- W2952176080 date "2009-11-17" @default.
- W2952176080 modified "2023-09-27" @default.
- W2952176080 title "Understanding the Principles of Recursive Neural networks: A Generative Approach to Tackle Model Complexity" @default.
- W2952176080 cites W1487333565 @default.
- W2952176080 cites W1494061796 @default.
- W2952176080 cites W1501856433 @default.
- W2952176080 cites W1576278180 @default.
- W2952176080 cites W1581242383 @default.
- W2952176080 cites W1589549454 @default.
- W2952176080 cites W2000375074 @default.
- W2952176080 cites W2006829201 @default.
- W2952176080 cites W2044999719 @default.
- W2952176080 cites W2046046350 @default.
- W2952176080 cites W2067765887 @default.
- W2952176080 cites W2101656164 @default.
- W2952176080 cites W2127827747 @default.
- W2952176080 cites W2429914308 @default.
- W2952176080 hasPublicationYear "2009" @default.
- W2952176080 type Work @default.
- W2952176080 sameAs 2952176080 @default.
- W2952176080 citedByCount "2" @default.
- W2952176080 countsByYear W29521760802017 @default.
- W2952176080 countsByYear W29521760802020 @default.
- W2952176080 crossrefType "posted-content" @default.
- W2952176080 hasAuthorship W2952176080A5085176089 @default.
- W2952176080 hasConcept C11413529 @default.
- W2952176080 hasConcept C119857082 @default.
- W2952176080 hasConcept C126255220 @default.
- W2952176080 hasConcept C154945302 @default.
- W2952176080 hasConcept C162324750 @default.
- W2952176080 hasConcept C179799912 @default.
- W2952176080 hasConcept C2777303404 @default.
- W2952176080 hasConcept C33923547 @default.
- W2952176080 hasConcept C41008148 @default.
- W2952176080 hasConcept C50522688 @default.
- W2952176080 hasConcept C50644808 @default.
- W2952176080 hasConceptScore W2952176080C11413529 @default.
- W2952176080 hasConceptScore W2952176080C119857082 @default.
- W2952176080 hasConceptScore W2952176080C126255220 @default.
- W2952176080 hasConceptScore W2952176080C154945302 @default.
- W2952176080 hasConceptScore W2952176080C162324750 @default.
- W2952176080 hasConceptScore W2952176080C179799912 @default.
- W2952176080 hasConceptScore W2952176080C2777303404 @default.
- W2952176080 hasConceptScore W2952176080C33923547 @default.
- W2952176080 hasConceptScore W2952176080C41008148 @default.
- W2952176080 hasConceptScore W2952176080C50522688 @default.
- W2952176080 hasConceptScore W2952176080C50644808 @default.
- W2952176080 hasLocation W29521760801 @default.
- W2952176080 hasOpenAccess W2952176080 @default.
- W2952176080 hasPrimaryLocation W29521760801 @default.
- W2952176080 hasRelatedWork W154005121 @default.
- W2952176080 hasRelatedWork W2109416196 @default.
- W2952176080 hasRelatedWork W2771839145 @default.
- W2952176080 hasRelatedWork W2786058103 @default.
- W2952176080 hasRelatedWork W2812202668 @default.
- W2952176080 hasRelatedWork W2890503637 @default.
- W2952176080 hasRelatedWork W2902405271 @default.
- W2952176080 hasRelatedWork W2910303335 @default.
- W2952176080 hasRelatedWork W2911805364 @default.
- W2952176080 hasRelatedWork W2962945654 @default.
- W2952176080 hasRelatedWork W2990140544 @default.
- W2952176080 hasRelatedWork W3000335058 @default.
- W2952176080 hasRelatedWork W3023002804 @default.
- W2952176080 hasRelatedWork W3080412179 @default.
- W2952176080 hasRelatedWork W3088910027 @default.
- W2952176080 hasRelatedWork W3139064159 @default.
- W2952176080 hasRelatedWork W3202402610 @default.
- W2952176080 hasRelatedWork W3202867336 @default.
- W2952176080 hasRelatedWork W3206216308 @default.
- W2952176080 hasRelatedWork W3210522096 @default.
- W2952176080 isParatext "false" @default.
- W2952176080 isRetracted "false" @default.
- W2952176080 magId "2952176080" @default.
- W2952176080 workType "article" @default.