Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952176306> ?p ?o ?g. }
- W2952176306 abstract "Abstract Frequency domain semiparametric estimation of memory parameters belongs to the standard toolkit of applied time series researchers. These methods are based on a local approximation of the spectral density, which robustifies the estimation methods against misspecification, but induces a loss with respect to the parametric setting, where the spectral density is known up to a finite number of unknown parameters. In particular, standard semiparametric estimators have convergence rates no better than T2/5, whereas the rate T1/2 is achievable under parametric assumptions. Refinements of the local approximation have been developed by means of bias-reducing techniques, implying that rates arbitrarily close to the parametric one are achievable in the semiparametric setting. Two of these approaches to cover more general settings (including non-stationarity) are extended. A Monte Carlo experiment of finite sample performance is used to assess whether the asymptotic advantages of the bias-reducing methods materialize in better finite sample behavior." @default.
- W2952176306 created "2019-06-27" @default.
- W2952176306 creator A5033990109 @default.
- W2952176306 creator A5085006544 @default.
- W2952176306 date "2019-10-01" @default.
- W2952176306 modified "2023-10-17" @default.
- W2952176306 title "Local Whittle estimation of long memory: Standard versus bias-reducing techniques" @default.
- W2952176306 cites W109968135 @default.
- W2952176306 cites W1973694910 @default.
- W2952176306 cites W1973884078 @default.
- W2952176306 cites W1979252774 @default.
- W2952176306 cites W2009513343 @default.
- W2952176306 cites W2015947314 @default.
- W2952176306 cites W2019572758 @default.
- W2952176306 cites W2042536367 @default.
- W2952176306 cites W2047422669 @default.
- W2952176306 cites W2051041131 @default.
- W2952176306 cites W2063827883 @default.
- W2952176306 cites W2065541420 @default.
- W2952176306 cites W2078162703 @default.
- W2952176306 cites W2081475269 @default.
- W2952176306 cites W2090879268 @default.
- W2952176306 cites W2107168615 @default.
- W2952176306 cites W2128131501 @default.
- W2952176306 cites W2141689601 @default.
- W2952176306 cites W2157385378 @default.
- W2952176306 cites W2157628315 @default.
- W2952176306 cites W2788899327 @default.
- W2952176306 cites W3021336658 @default.
- W2952176306 cites W3023013505 @default.
- W2952176306 cites W3121966990 @default.
- W2952176306 cites W3123103961 @default.
- W2952176306 cites W3124179420 @default.
- W2952176306 cites W3124354217 @default.
- W2952176306 cites W3125610179 @default.
- W2952176306 cites W3125863044 @default.
- W2952176306 cites W3184417104 @default.
- W2952176306 doi "https://doi.org/10.1016/j.ecosta.2019.05.004" @default.
- W2952176306 hasPublicationYear "2019" @default.
- W2952176306 type Work @default.
- W2952176306 sameAs 2952176306 @default.
- W2952176306 citedByCount "0" @default.
- W2952176306 crossrefType "journal-article" @default.
- W2952176306 hasAuthorship W2952176306A5033990109 @default.
- W2952176306 hasAuthorship W2952176306A5085006544 @default.
- W2952176306 hasConcept C102366305 @default.
- W2952176306 hasConcept C105795698 @default.
- W2952176306 hasConcept C117251300 @default.
- W2952176306 hasConcept C126255220 @default.
- W2952176306 hasConcept C127162648 @default.
- W2952176306 hasConcept C143724316 @default.
- W2952176306 hasConcept C149782125 @default.
- W2952176306 hasConcept C151730666 @default.
- W2952176306 hasConcept C162324750 @default.
- W2952176306 hasConcept C185429906 @default.
- W2952176306 hasConcept C185592680 @default.
- W2952176306 hasConcept C19499675 @default.
- W2952176306 hasConcept C198531522 @default.
- W2952176306 hasConcept C2777303404 @default.
- W2952176306 hasConcept C28826006 @default.
- W2952176306 hasConcept C31258907 @default.
- W2952176306 hasConcept C33923547 @default.
- W2952176306 hasConcept C41008148 @default.
- W2952176306 hasConcept C43617362 @default.
- W2952176306 hasConcept C50522688 @default.
- W2952176306 hasConcept C57869625 @default.
- W2952176306 hasConcept C78297888 @default.
- W2952176306 hasConcept C86803240 @default.
- W2952176306 hasConceptScore W2952176306C102366305 @default.
- W2952176306 hasConceptScore W2952176306C105795698 @default.
- W2952176306 hasConceptScore W2952176306C117251300 @default.
- W2952176306 hasConceptScore W2952176306C126255220 @default.
- W2952176306 hasConceptScore W2952176306C127162648 @default.
- W2952176306 hasConceptScore W2952176306C143724316 @default.
- W2952176306 hasConceptScore W2952176306C149782125 @default.
- W2952176306 hasConceptScore W2952176306C151730666 @default.
- W2952176306 hasConceptScore W2952176306C162324750 @default.
- W2952176306 hasConceptScore W2952176306C185429906 @default.
- W2952176306 hasConceptScore W2952176306C185592680 @default.
- W2952176306 hasConceptScore W2952176306C19499675 @default.
- W2952176306 hasConceptScore W2952176306C198531522 @default.
- W2952176306 hasConceptScore W2952176306C2777303404 @default.
- W2952176306 hasConceptScore W2952176306C28826006 @default.
- W2952176306 hasConceptScore W2952176306C31258907 @default.
- W2952176306 hasConceptScore W2952176306C33923547 @default.
- W2952176306 hasConceptScore W2952176306C41008148 @default.
- W2952176306 hasConceptScore W2952176306C43617362 @default.
- W2952176306 hasConceptScore W2952176306C50522688 @default.
- W2952176306 hasConceptScore W2952176306C57869625 @default.
- W2952176306 hasConceptScore W2952176306C78297888 @default.
- W2952176306 hasConceptScore W2952176306C86803240 @default.
- W2952176306 hasFunder F4320322930 @default.
- W2952176306 hasLocation W29521763061 @default.
- W2952176306 hasOpenAccess W2952176306 @default.
- W2952176306 hasPrimaryLocation W29521763061 @default.
- W2952176306 hasRelatedWork W143479 @default.
- W2952176306 hasRelatedWork W194299 @default.
- W2952176306 hasRelatedWork W3640231 @default.
- W2952176306 hasRelatedWork W4047964 @default.
- W2952176306 hasRelatedWork W487273 @default.