Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952182451> ?p ?o ?g. }
- W2952182451 endingPage "800" @default.
- W2952182451 startingPage "800" @default.
- W2952182451 abstract "The purpose of this study was to determine the predictive power for treatment outcome of a machine-learning algorithm combining magnetic resonance imaging (MRI)-derived data in patients with sinonasal squamous cell carcinomas (SCCs). Thirty-six primary lesions in 36 patients were evaluated. Quantitative morphological parameters and intratumoral characteristics from T2-weighted images, tumor perfusion parameters from arterial spin labeling (ASL) and tumor diffusion parameters of five diffusion models from multi-b-value diffusion-weighted imaging (DWI) were obtained. Machine learning by a non-linear support vector machine (SVM) was used to construct the best diagnostic algorithm for the prediction of local control and failure. The diagnostic accuracy was evaluated using a 9-fold cross-validation scheme, dividing patients into training and validation sets. Classification criteria for the division of local control and failure in nine training sets could be constructed with a mean sensitivity of 0.98, specificity of 0.91, positive predictive value (PPV) of 0.94, negative predictive value (NPV) of 0.97, and accuracy of 0.96. The nine validation data sets showed a mean sensitivity of 1.0, specificity of 0.82, PPV of 0.86, NPV of 1.0, and accuracy of 0.92. In conclusion, a machine-learning algorithm using various MR imaging-derived data can be helpful for the prediction of treatment outcomes in patients with sinonasal SCCs." @default.
- W2952182451 created "2019-06-27" @default.
- W2952182451 creator A5005284344 @default.
- W2952182451 creator A5005371127 @default.
- W2952182451 creator A5020774876 @default.
- W2952182451 creator A5026356023 @default.
- W2952182451 creator A5028998584 @default.
- W2952182451 creator A5035360381 @default.
- W2952182451 creator A5039165537 @default.
- W2952182451 creator A5048840982 @default.
- W2952182451 creator A5060929910 @default.
- W2952182451 creator A5066514747 @default.
- W2952182451 creator A5088707584 @default.
- W2952182451 date "2019-06-10" @default.
- W2952182451 modified "2023-10-16" @default.
- W2952182451 title "Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study" @default.
- W2952182451 cites W1604475743 @default.
- W2952182451 cites W1844666018 @default.
- W2952182451 cites W1961410809 @default.
- W2952182451 cites W1965170884 @default.
- W2952182451 cites W1978451408 @default.
- W2952182451 cites W1979949135 @default.
- W2952182451 cites W1982690661 @default.
- W2952182451 cites W1996643322 @default.
- W2952182451 cites W2022587304 @default.
- W2952182451 cites W2075938682 @default.
- W2952182451 cites W2088131094 @default.
- W2952182451 cites W2091880592 @default.
- W2952182451 cites W2103292107 @default.
- W2952182451 cites W2147745144 @default.
- W2952182451 cites W2159479423 @default.
- W2952182451 cites W2231056033 @default.
- W2952182451 cites W2261484714 @default.
- W2952182451 cites W2378778311 @default.
- W2952182451 cites W2418889654 @default.
- W2952182451 cites W2517839157 @default.
- W2952182451 cites W2543196024 @default.
- W2952182451 cites W2549773285 @default.
- W2952182451 cites W2591992783 @default.
- W2952182451 cites W2601009114 @default.
- W2952182451 cites W2622758479 @default.
- W2952182451 cites W2761033249 @default.
- W2952182451 cites W2762950827 @default.
- W2952182451 cites W2769868297 @default.
- W2952182451 cites W2775416330 @default.
- W2952182451 cites W2793302868 @default.
- W2952182451 cites W2799324877 @default.
- W2952182451 cites W2802099355 @default.
- W2952182451 cites W2809302737 @default.
- W2952182451 cites W2890749352 @default.
- W2952182451 cites W2891596073 @default.
- W2952182451 cites W2894069389 @default.
- W2952182451 cites W2894964438 @default.
- W2952182451 cites W2906911426 @default.
- W2952182451 cites W2918775284 @default.
- W2952182451 doi "https://doi.org/10.3390/cancers11060800" @default.
- W2952182451 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6627127" @default.
- W2952182451 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31185611" @default.
- W2952182451 hasPublicationYear "2019" @default.
- W2952182451 type Work @default.
- W2952182451 sameAs 2952182451 @default.
- W2952182451 citedByCount "26" @default.
- W2952182451 countsByYear W29521824512019 @default.
- W2952182451 countsByYear W29521824512020 @default.
- W2952182451 countsByYear W29521824512021 @default.
- W2952182451 countsByYear W29521824512022 @default.
- W2952182451 countsByYear W29521824512023 @default.
- W2952182451 crossrefType "journal-article" @default.
- W2952182451 hasAuthorship W2952182451A5005284344 @default.
- W2952182451 hasAuthorship W2952182451A5005371127 @default.
- W2952182451 hasAuthorship W2952182451A5020774876 @default.
- W2952182451 hasAuthorship W2952182451A5026356023 @default.
- W2952182451 hasAuthorship W2952182451A5028998584 @default.
- W2952182451 hasAuthorship W2952182451A5035360381 @default.
- W2952182451 hasAuthorship W2952182451A5039165537 @default.
- W2952182451 hasAuthorship W2952182451A5048840982 @default.
- W2952182451 hasAuthorship W2952182451A5060929910 @default.
- W2952182451 hasAuthorship W2952182451A5066514747 @default.
- W2952182451 hasAuthorship W2952182451A5088707584 @default.
- W2952182451 hasBestOaLocation W29521824511 @default.
- W2952182451 hasConcept C11413529 @default.
- W2952182451 hasConcept C119857082 @default.
- W2952182451 hasConcept C12267149 @default.
- W2952182451 hasConcept C126322002 @default.
- W2952182451 hasConcept C126838900 @default.
- W2952182451 hasConcept C143409427 @default.
- W2952182451 hasConcept C149550507 @default.
- W2952182451 hasConcept C154945302 @default.
- W2952182451 hasConcept C3019719930 @default.
- W2952182451 hasConcept C41008148 @default.
- W2952182451 hasConcept C71924100 @default.
- W2952182451 hasConceptScore W2952182451C11413529 @default.
- W2952182451 hasConceptScore W2952182451C119857082 @default.
- W2952182451 hasConceptScore W2952182451C12267149 @default.
- W2952182451 hasConceptScore W2952182451C126322002 @default.
- W2952182451 hasConceptScore W2952182451C126838900 @default.
- W2952182451 hasConceptScore W2952182451C143409427 @default.
- W2952182451 hasConceptScore W2952182451C149550507 @default.