Matches in SemOpenAlex for { <https://semopenalex.org/work/W2952183007> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2952183007 abstract "Traditionally, radar rainfall algorithms are derived through nonlinear regression of rain rates and simulated radar observables from raindrop size distribution (DSD). The performance of such empirical relations is highly dependent on the physical model of DSD and the parametric relation between the physical model and radar parameters. Such algorithms also have large uncertainties that need to be adaptively adjusted based on local DSD properties. In this research, we propose an alternative approach to dual-polarization radar rainfall estimation. In particular, a non-parametric machine learning model is designed and trained using simulated radar data based on DSD measurements in different climatological regimes. The trained model is applied to real radar measurements to produce rain rate estimates. Preliminary results show the promising performance of this novel method compared to traditional parametric rainfall relations." @default.
- W2952183007 created "2019-06-27" @default.
- W2952183007 creator A5034049849 @default.
- W2952183007 creator A5082636639 @default.
- W2952183007 creator A5086219156 @default.
- W2952183007 date "2019-03-01" @default.
- W2952183007 modified "2023-10-17" @default.
- W2952183007 title "A Deep Learning Approach to Dual-Polarization Radar Rainfall Estimation" @default.
- W2952183007 cites W2027439914 @default.
- W2952183007 cites W2397964538 @default.
- W2952183007 cites W2474583706 @default.
- W2952183007 cites W2578768658 @default.
- W2952183007 cites W2782393710 @default.
- W2952183007 cites W2782883212 @default.
- W2952183007 cites W2782976901 @default.
- W2952183007 cites W2884509040 @default.
- W2952183007 cites W2893879374 @default.
- W2952183007 doi "https://doi.org/10.23919/ursiap-rasc.2019.8738337" @default.
- W2952183007 hasPublicationYear "2019" @default.
- W2952183007 type Work @default.
- W2952183007 sameAs 2952183007 @default.
- W2952183007 citedByCount "6" @default.
- W2952183007 countsByYear W29521830072020 @default.
- W2952183007 countsByYear W29521830072021 @default.
- W2952183007 countsByYear W29521830072022 @default.
- W2952183007 countsByYear W29521830072023 @default.
- W2952183007 crossrefType "proceedings-article" @default.
- W2952183007 hasAuthorship W2952183007A5034049849 @default.
- W2952183007 hasAuthorship W2952183007A5082636639 @default.
- W2952183007 hasAuthorship W2952183007A5086219156 @default.
- W2952183007 hasConcept C105795698 @default.
- W2952183007 hasConcept C11413529 @default.
- W2952183007 hasConcept C117251300 @default.
- W2952183007 hasConcept C119857082 @default.
- W2952183007 hasConcept C121332964 @default.
- W2952183007 hasConcept C127313418 @default.
- W2952183007 hasConcept C153294291 @default.
- W2952183007 hasConcept C154945302 @default.
- W2952183007 hasConcept C158622935 @default.
- W2952183007 hasConcept C205649164 @default.
- W2952183007 hasConcept C24574437 @default.
- W2952183007 hasConcept C33923547 @default.
- W2952183007 hasConcept C41008148 @default.
- W2952183007 hasConcept C554190296 @default.
- W2952183007 hasConcept C62520636 @default.
- W2952183007 hasConcept C62649853 @default.
- W2952183007 hasConcept C76155785 @default.
- W2952183007 hasConcept C92237259 @default.
- W2952183007 hasConceptScore W2952183007C105795698 @default.
- W2952183007 hasConceptScore W2952183007C11413529 @default.
- W2952183007 hasConceptScore W2952183007C117251300 @default.
- W2952183007 hasConceptScore W2952183007C119857082 @default.
- W2952183007 hasConceptScore W2952183007C121332964 @default.
- W2952183007 hasConceptScore W2952183007C127313418 @default.
- W2952183007 hasConceptScore W2952183007C153294291 @default.
- W2952183007 hasConceptScore W2952183007C154945302 @default.
- W2952183007 hasConceptScore W2952183007C158622935 @default.
- W2952183007 hasConceptScore W2952183007C205649164 @default.
- W2952183007 hasConceptScore W2952183007C24574437 @default.
- W2952183007 hasConceptScore W2952183007C33923547 @default.
- W2952183007 hasConceptScore W2952183007C41008148 @default.
- W2952183007 hasConceptScore W2952183007C554190296 @default.
- W2952183007 hasConceptScore W2952183007C62520636 @default.
- W2952183007 hasConceptScore W2952183007C62649853 @default.
- W2952183007 hasConceptScore W2952183007C76155785 @default.
- W2952183007 hasConceptScore W2952183007C92237259 @default.
- W2952183007 hasLocation W29521830071 @default.
- W2952183007 hasOpenAccess W2952183007 @default.
- W2952183007 hasPrimaryLocation W29521830071 @default.
- W2952183007 hasRelatedWork W2009723184 @default.
- W2952183007 hasRelatedWork W2166923512 @default.
- W2952183007 hasRelatedWork W2300775916 @default.
- W2952183007 hasRelatedWork W2888438656 @default.
- W2952183007 hasRelatedWork W2904176660 @default.
- W2952183007 hasRelatedWork W2985904156 @default.
- W2952183007 hasRelatedWork W2989724460 @default.
- W2952183007 hasRelatedWork W2994168332 @default.
- W2952183007 hasRelatedWork W4224272508 @default.
- W2952183007 hasRelatedWork W4328124013 @default.
- W2952183007 isParatext "false" @default.
- W2952183007 isRetracted "false" @default.
- W2952183007 magId "2952183007" @default.
- W2952183007 workType "article" @default.